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Ranking	is	Important	for	Web	Search

• Criteria
– Relevance
– Diversity	
– Freshness
……

• Ranking	model
– Heuristic

• Relevance:	BM25,	LMIR
• Diversity:	MMR,	xQuAD

– Learning	to	rank
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Ranking	in	Information	Retrieval
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Learning	to	Rank	for	Information	Retrieval

• Machine learning algorithms for relevance ranking 
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Independent	Relevance	Assumption

• Utility	of	a	doc	is	independent	of	other	docs
• Ranking	as	scoring	&	sorting
– Each	documents	can	be	scored	independently
– Scores	are	independent	of	the	rank
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Beyond	Independent	Relevance
• More	ranking	criteria,	e.g.,	search	result	

diversification
– Covering	as	much	subtopics	as	possible	with	

a	few	documents
– Need	consider	the	novelty of	a	document	

given	preceding	documents
• Complex	application	environment,	e.g.,	

Interactive	IR
– Human	interacts	with	the	system	during	the	

ranking	process
– User	feedback	is	helpful	for	improving	the	

remaining	results
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Good Bad

Java Java

C++ Java

Python Java

Query:	Programming	 language

Need	more	powerful	ranking	mechanism!	



Outline

• Background:	learning	to	rank	for	IR
• Reinforcement	learning	to	rank
– Ranking	as	Markov	decision	process
– Adapting	MDP	for	relevance	and	diverse	ranking

• Summary

8



From	Scoring	&	Sorting	to	
Sequential	Decision	Making

• Advantages:	beyond	independent	relevance
– Modeling	the	dependencies	between	documents
– Taking	the	ranking	positions	into	consideration
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Markov	Decision	Process	(MDP)
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Ranking	as	Markov	Decision	Process

• Time	steps:	ranks
• State:	query,	preceding	docs,	candidates,	……
• Policy:	distribution	over	remaining	candidate	documents
• Action	(Decision):	selecting	a	doc	and	placing	it	to	current	pos
• Reward

– Additional	 utility	(e.g.,	the	increase	of	DCG)	from	the	selected	doc
– Calculated	based	on	widely	used	evaluation	measures	(e.g.,	DCG,	ERR-IA) 11

Candidate	document	set

Decide	which	doc	
should	be	selected	for	
the	2nd position

query

Rank	1:	doc	1

Rank	2:	?



Learning	and	Online	Ranking
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• Learning	the	parameters
– Model	parameters:	policy	function,	state	
initialization	and	transition	etc.

– Reinforcement	learning:	policy	gradient
– Rewards	based	on	relevance	labels	as	supervision

• Online	ranking
–Without	rewards	(rewards	are	based	on	relevance	
labels)

– Fully	trust	the	learned	policy	



Example	1:	Learning	for	Search	
Result	Diversification
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Long Xia, Jun Xu, Yanyan Lan, et al., Adapting Markov Decision Process for 
Search Result Diversification. Proceedings of SIGIR 2017, pp. 535-544.



Search	Result	Diversification

• Query:	information	
needs	are	ambiguous	
and	multi-faceted

• Search	results:	may	
contain	redundant	
information

• Goal:	covering	as	
much	subtopics	as	
possible	with	a	few	
documents
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Query:	jaguar



Modeling	Diverse	Ranking	with	MDP

• Key	points
– Mimic	user	top-down	browsing	behaviors
– Model	dynamic	information	needs	with	MDP	state

• States	𝑠3 = [𝑍3, 𝑋3, 𝐡3]
– 𝑍3:	sequence	of	𝑡 preceding	documents,	𝑍: = 𝜙
– 𝑋3:	set	of	candidate	documents,	𝑋: = 𝑋
– 𝐡3 ∈ 𝑅> :	latent	vector,	encodes user	perceived	utility	
from	preceding	documents,	initialized	with	the	
information	needs	form	the	query:	

𝐡: = 𝜎 𝐕A𝐪
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Modeling	Diverse	Ranking	with	MDP
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MDP	factors Corresponding diverse	ranking factors

Time steps The	ranking	positions

State 𝑠3 = 𝑍3,𝑋3, 𝐡3
Policy

𝜋 𝑎3|𝑠3 = [𝑍3, 𝑋3,𝐡3] =
exp 𝐱I JK

L 𝐔𝐡3
𝑍

Action Selecting	a	doc and	placing	it	to	rank	𝑡 + 1
Reward Based on	evaluation	measure	αDCG,	SRecall etc.	For	example:		

𝑅 = 𝛼DCG 𝑡 + 1 − 𝛼DCG 𝑡 ;
𝑅 = SRecall 𝑡 + 1 − SRecall 𝑡

State	Transition 𝑠3Z/ = 𝑇 𝑠3 = [𝑍3, 𝑋3,𝐡3], 𝑎3
= 𝑍3⨁ 𝐱I JK , 𝑋3\ 𝐱I JK ,𝜎 𝐕𝐱I JK + 𝐖𝐡3

𝐱I JK :	document	
embedding



Ranking	Process:	Initialize	State
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𝑠: = 𝜙,𝑋, 𝜎 𝐕A𝐪



Ranking	Process:	Policy
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Ranking	Process:	Action
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Ranking	Process:	Reward
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Document	
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documents

Query

Get	reward,	e.g.,	
𝑅 = 𝛼𝐷𝐶𝐺 𝑡 + 1 − 𝛼𝐷𝐶𝐺 𝑡

doc	at	rank	1



Ranking	Process:	State	Transition
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Document	
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documents

Query

doc	at	rank	1

𝑠3Z/ = 𝑍3⨁ 𝐱I JK ,𝑋3\ 𝐱I JK , 𝜎 𝐕𝐱I JK + 𝐖𝐡3

Update	ranked	list,	candidate	set,	and	latent	vector	



Ranking	Process:	Iterate
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Learning	with	Policy	Gradient

• Model	parameters	𝚯 = 𝐕A,𝐔, 𝐕,𝐖
• Learning	objective:	maximizing	expected	return	
(discounted	sum	of	rewards)	of	each	training	query

max
𝚯

𝑣(𝐪) = 𝐸f𝐺: = 𝐸f g 𝛾i𝑟iZ/

kl/

im:
– Directly	optimizes	evaluation	measure	as	𝐺: = 𝛼DCG@𝑀

• Monte-Carlo	stochastic	gradient	ascent	is	used	to	
conduct	the	optimization	(REINFORCE	algorithm)

𝛻𝚯𝑣 𝐪q = 𝛾3𝐺3𝛻𝚯 log𝜋 𝑎3|𝑠3;𝚯
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Analysis
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• Optimize	general	diversity	evaluation	measures	
(e.g.,	α-DCG,	S-recall)

• Given	an	episode	and	time	step	t

discounted	sum	of	the	rewards,	
starting	from	position	0	(return)

Maximizing	 the	return	starting	
from	position	 t



The	Learning	Algorithm
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Sample	a	ranking	



Online	Ranking Algorithm

• Fully	trust	the	policy
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using	max	instead	
of	sampling



Experimental	Results

• Based	on	combination	of	TREC	2009	~	2012	Web	Track	
• Directly	optimize	a	predefined	measure	via	defining	the	
rewards	based	on	the	measure
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How	it	works?	
Using	Query	93	as	Example	

28



How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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How	it	works?	
Using	Query	93	as	Example	
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Using	Immediate	Rewards	in	Training
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Train with α-DCG@M

Train with α-DCG@k
(k=1, …, M)



Convergence	and	Online	Ranking	Criterion
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Advantages

• Unified	criterion	(additional	utility	user	can	
perceive)	for	selecting	documents	at	each	
iteration

• End-to-end	learning	of	the	diverse	ranking	
model
– No	need	of	handcrafted	features

• Utilizes	both	the	immediate	rewards	and	the	
long-term	returns	as	the	supervision	information	
during	training

38



Example	2:	Relevance	Ranking	as	an	MDP
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Wei Zeng, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Reinforcement Learning 
to Rank with Markov Decision Process. Proceedings of SIGIR 2017, pp. 945-948.



Modeling	Relevance	Ranking	with	MDP
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MDP	factors Corresponding relevance	ranking factors

Time steps The	ranking	positions

State 𝑠3 = [𝑡, 𝑋3]
Policy

𝜋 𝑎3|𝑠3 = [𝑡,𝑋3] =
exp 𝐰L𝐱I JK

∑ exp 𝐰L𝐱I JJ∈v 3

Action Selecting	a	doc and	placing	it	to	current	position

Reward Based on	evaluation	measure	DCG:		

𝑅 = w
2y zK − 1 𝑡 = 0
0
| zK l/

}~�� 3Z/
𝑡 > 0

State	Transition 𝑠3Z/ = 𝑇 𝑠3 = [𝑡, 𝑋3], 𝑎3 = 𝑡 + 1	, 𝑋3\ 𝐱I JK ,	

𝐱I JK :	query-doc	
relevance	features



The	Ranking	Process
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Learning	with	Policy	Gradient
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Experimental	Results

• MDPRank is	better	because
– Utilize	the	IR	measures	calculated	at	all	the	ranking	
positions	as	supervision	information	for	training

– Directly	optimizes	the	IR	measure	on	the	training	data	
without	any	approximation	or	upper	bounding
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Outline

• Background:	learning	to	rank	for	IR
• Reinforcement	learning	to	rank
• Summary
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Summary

• Reinforcement	learning	to	rank
– Ranking	as	sequential	decision	making
– Adapting	MDP	for	the	task
– Learning	with	policy	gradient

• Two	examples
– Diverse	ranking	
– Relevance	ranking
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Easy	Machine	Learning	Project
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Design	of	Easy	Machine	Learning
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Data Storage and Management
Large scale data management

HDFS
Structured data management

MySQL

Distributed Computing

Map-Reduce Spark TensorFlow

Scheduling: Oozie

Execute command lines Program status

Interactive GUI (GWT)

Dataflow DAG

Workflow DAG

Job status, 
program status

designer monitor

Submit Oozie job

Node: program / data
Edge: dataflow

Node: program / start / 
end / fork / join
Edge: dependency



Deploy	as	Web	Service	
http://159.226.40.104:18080/dev

• Advantages
– Sharing:	share	data/programs/tasks	among	users
– Collaborating:	working	together	for	one	task
– Mobility:	accessing	with	web	browsers	anywhere
– Open:		ETL	for	data	import/export;	can	run	third-party	programs	

482017/11/12

Brower Web	server Hadoop/Spark	 cluster



Source	Shared	at	Github
https://github.com/ICT-BDA/EasyML

• Top	1	Java	project	at	Github trending	for	
one	week	

• 1400	+	stars	and	~300	forks
• CIKM	2016	best	demo	candidate	

[Guo et	al.,	CIKM	’16]
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Thanks!	

junxu@ict.ac.cn
http://www.bigdatalab.ac.cn/~junxu
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