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Problems with direct methods
[Problem 1] The order information of words is missing

Bag of words assumption:

However:

hot dog dog hot=

hot dog dog hot=/
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The importance of the words order
❖ Assume that comprehension vocabulary is 100,000 words, that 

sentences are 20 words long, and that word order is important only 
within sentences. 

❖ Then the contributions, in bits are log2(100000^20) and log2(20!) 
respectively, which works out to over 80% of the potential 
information in language being in the choice of words without regard 
to the order in which they appear. 

Word 80%
Information

Order 20%
Information

Landauer T K. On the computational basis of learning and cognition: Arguments from LSA[J]. Psychology of 

learning and motivation, 2002, 41: 43-84. 4



Problems with direct methods
[Problem 2] Over simplified sentence representation

thecaton
sat

yellow

mat

Bag of words 
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“The cat sat on the yellow mat = The yellow cat sat on the mat” 
under bag-of-words assumption



Problems with direct methods
[Problem 3] Heuristic matching function
❖ A vector for representing the whole sentence
❖ Based on distance measures between two vectors

❖ Cosine, Euclidean distance … 
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Limited information of 
two vectors are taken 
into consideration
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How to design deep semantic 
matching models for text?



Keeping order information
❖ A sequence of word embeddings

❖ Convert each word to its embedding (e.g., word2vec)

❖ Concatenate embeddings to a sequence 
The cat sat on the mat

Sequence	of	Word EmbeddingsBag of Word Embeddings

thecaton
sat

yellow

mat
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Rich sentence representation
❖ Hierarchical structure of sentence representation, e.g., different 

levels of embeddings

Word

Short Phrase

Long Phrase

Sentence

Short Phrase
Embedding

Sentence
Embedding
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Powerful matching function

❖ Considering different levels/types of matching signals

Down	the	ages	 noodles	and	dumplings	were	famous	Chinese	food.

Down	the	ages	 dumplings	and	noodles	were	popular	in	China.

N-gram N-term N-term

Pang L, Lan Y, Guo J, et al. Text matching as image recognition//Proceedings of the 30th AAAI Conference on 
Artificial Intelligence. Phoenix, USA, 2016: 2793-2799. 
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Learning the matching function
❖ Data-driven approaches to determining the parameters

Python

Python

Hot Dot

Hot Dot

hard working

work hard

study

learn

Keyword
Matching Signal

N-gram
Matching Signal

N-term
Matching Signal

Semantic
Matching Signal

. . . . . .

+0.8
+1.0 +0.5 +0.1

Matching Score
Learning to composite
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Existing deep text matching models
❖ Composition focused methods

❖ [Problem 1: order] [Problem 2: structure]

❖ Composite each sentence into one embedding

❖ Measure the similarity between the two embeddings

❖ Interaction focused methods

❖ [Problem 1: order] [Problem 3: matching function]

❖ Two sentences meet before their own high-level representations mature

❖ Capture complex matching patterns

13



Composition Focused Methods
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Composition focused methods 
❖ Step 1: Composite sentence representation φ(x)

❖ Step 2: Matching between the representations F(φ(x), φ(y))

15

Input
Compositional 

sentence 
representations

Matching 
function

matching score



Composition focused methods will be discussed

❖ Based on DNN
❖ DSSM: Learning Deep Structured Semantic Models for Web Search using Click-through 

Data (Huang et al., CIKM ’13)
❖ Based on CNN

❖ CDSSM: A latent semantic model with convolutional-pooling structure for information 
retrieval (Shen Y et al., CIKM ’14)

❖ ARC I: Convolutional Neural Network Architectures for Matching Natural Language 
Sentences (Hu et al., NIPS ’14)

❖ CNTN: Convolutional neural tensor network architecture for community-based question 
Answering (Qiu et al., IJCAI ’15)

❖ Based on RNN
❖ LSTM-RNN: Deep Sentence Embedding Using the Long Short Term Memory Network: 

Analysis and Application to Information Retrieval (Palangi et al., TASLP ’16)
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Deep structured semantic model (DSSM)

17
Huang P-S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough
data//Proceedings of  the 22nd ACM international conference on CIKM. Amazon, India, 2013: 2333-2338 

letter-trigram of 
sentence fully connected layer cosine 

similarity



DSSM input: letter-trigram
❖ Bag of words representation

❖ “candy store”: [ o o o 1 o o o 1 o o o … ]

❖ Letter-trigram representation

❖ “#candy# #store#” ⇒ #ca | can | and | ndy | dy# | #st | sto | tor | ore | re#

❖ [ o o 1 o o … o 1 o 1 … o o …]

❖ Advantages:

❖ Compact representation: # words: 500K ⇒ # letter-trigram: 30K

❖ Generalize to unseen words

❖ Robust to noisy inputs, e.g., misspelling, inflection …

18



DSSM sentence representation: DNN

Figure from He et al., CIKM ’14 tutorial19

Model: DNN for capturing the compositional sentence representation



DSSM matching function
❖ Cosine similarity between semantic vectors

❖ Training

❖ A query q and a list of docs

❖       relevant doc,                 irrelevant docs

❖ Objective:

❖ Optimizing with SGD

! = 	 $
% 	 & '
$ & |'|

! = #$,#&',… ,#)'

!" !"#,… , !&#

! "# $ = exp	(+ cos $,"# )
∑ exp	(+cos	($, "))�
3∈5

20



DSSM: short summary

21

❖ Input: sub-word units (i.e. letter-trigram) as input for 
scalability and generalizability

❖ Representation: mapping sentences to vectors (i.e. 
DNN): semantically similar sentences close to each other

❖ Matching: cosine similarity as the matching function

❖ Problem: bag of letter-trigrams as inputs, the order 
information of words ignored



Capturing the order information
❖ Input: word sequence rather than bag of letter-trigrams

❖ Model: 

❖ Convolutional based methods can keep locally order 

❖ Recurrent based methods can keep long dependence relations 

22
CNN/RNNSequence of 
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Matching 
Function



CNN can model the order information

❖ Inspired by the cat’s 
visual cortex 
[Hubel68].

❖ Convolution & max 
pooling operations 
on text

Length Variability The variable length of sentences in a fairly broad range can be readily handled
with the convolution and pooling strategy. More specifically, we put all-zero padding vectors after
the last word of the sentence until the maximum length. To eliminate the boundary effect caused
by the great variability of sentence lengths, we add to the convolutional unit a gate which sets the
output vectors to all-zeros if the input is all zeros. For any given sentence input x, the output of
type-f filter for location i in the `th layer is given by

z(`,f)i
def
= z(`,f)i (x) = g(ˆz(`�1)

i ) · �(w(`,f)
ˆ

z

(`�1)
i + b(`,f)), (2)

where g(v) = 0 if all the elements in vector v equals 0, otherwise g(v) = 1. This gate, working
with max-pooling and positive activation function (e.g., Sigmoid), keeps away the artifacts from
padding in all layers. Actually it creates a natural hierarchy of all-zero padding (as illustrated in
Figure 1), consisting of nodes in the neural net that would not contribute in the forward process (as
in prediction) and backward propagation (as in learning).

2.1 Some Analysis on the Convolutional Architecture

Figure 2: The cat example, where in the convolution layer,
gray color indicates less confidence in composition.

The convolutional unit, when com-
bined with max-pooling, can act as
the compositional operator with lo-
cal selection mechanism as in the
recursive autoencoder [21]. Figure
2 gives an example on what could
happen on the first two layers with
input sentence “The cat sat on

the mat”. Just for illustration pur-
pose, we present a dramatic choice
of parameters (by turning off some
elements in W

(1)) to make the con-
volution units focus on different seg-
ments within a 3-word window. For
example, some feature maps (group
2) give compositions for “the cat”
and “cat sat”, each being a vector. Different feature maps offer a variety of compositions, with
confidence encoded in the values (color coded in output of convolution layer in Figure 2). The pool-
ing then chooses, for each composition type, between two adjacent sliding windows, e.g., between
“on the” and “the mat” for feature maps group 2 from the rightmost two sliding windows.

Relation to Recursive Models Our convolutional model differs from Recurrent Neural Network
(RNN, [15]) and Recursive Auto-Encoder (RAE, [21]) in several important ways. First, unlike
RAE, it does not take a single path of word/phrase composition determined either by a separate
gating function [21], an external parser [19], or just natural sequential order [20]. Instead, it takes
multiple choices of composition via a large feature map (encoded in w

(`,f) for different f ), and
leaves the choices to the pooling afterwards to pick the more appropriate segments(in every adjacent
two) for each composition. With any window width k` � 3, the type of composition would be much
richer than that of RAE. Second, our convolutional model can take supervised training and tune
the parameters for a specific task, a property vital to our supervised learning-to-match framework.
However, unlike recursive models [20, 21], the convolutional architecture has a fixed depth, which
bounds the level of composition it could do. For tasks like matching, this limitation can be largely
compensated with a network afterwards that can take a “global” synthesis on the learned sentence
representation.

Relation to “Shallow” Convolutional Models The proposed convolutional sentence model takes
simple architectures such as [18, 10] (essentially the same convolutional architecture as SENNA [6]),
which consists of a convolution layer and a max-pooling over the entire sentence for each feature
map. This type of models, with local convolutions and a global pooling, essentially do a “soft” local
template matching and is able to detect local features useful for a certain task. Since the sentence-
level sequential order is inevitably lost in the global pooling, the model is incapable of modeling
more complicated structures. It is not hard to see that our convolutional model degenerates to the
SENNA-type architecture if we limit the number of layers to be two and set the pooling window
infinitely large.

3
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RNN can model the order information

❖ RNNs implement dynamical systems 

❖ RNNs can approximate arbitrary  dynamical systems with arbitrary 
precision 

❖ Training: back propagation through time

❖ Two popularly used variations: long-short term memory (LSTM) and gated 
recurrent unit (GRU)

x ℎ #

RNN – Self Recurrent Link Expand RNN

S =
x

T · y
|x | · |y |

D = {d+, d�
1 , ..., d�

k }

d

+

d

�
1 , ..., d�

k

P(d+|q) = exp(� cos(q, d+))P
d2D exp(� cos(q, d))

s(t) = f (Uw(t) +Ws(t � 1) + b)
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Using CNN: CDSSM

Shen Y, He X, Gao J, et al. A latent semantic model with convolutional-pooling structure for information 
retrieval//Proceedings of the 23rd ACM international conference on CIKM. New York, USA, 2014: 101-110.

each word’s 
letter-trigrams
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ABSTRACT 
This paper presents a series of new latent semantic models based 
on a convolutional neural network (CNN) to learn low-
dimensional semantic vectors for search queries and Web docu-
ments. By using the convolution-max pooling operation, local 
contextual information at the word n-gram level is modeled first. 
Then, salient local features in a word sequence are combined to 
form a global feature vector. Finally, the high-level semantic in-
formation of the word sequence is extracted to form a global vec-
tor representation. The proposed models are trained on click-
through data by maximizing the conditional likelihood of clicked 
documents given a query, using stochastic gradient ascent. The 
new models are evaluated on a Web document ranking task using 
a large-scale, real-world data set. Results show that our model 
significantly outperforms other semantic models, which were 
state-of-the-art in retrieval performance prior to this work. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning 

Keywords 
Semantic Representation, Convolutional Neural Network 

1. INTRODUCTION 
Latent semantic models, such as latent semantic analysis (LSA) 
and its extensions, are able to map a query to its relevant docu-
ments at the semantic level (e.g.,[2]). However, most latent se-
mantic models still view a query (or a document) as a bag of 
words. Therefore, they are not effective in capturing fine-grained 
contextual structures for information retrieval.  

Modeling contextual information in search queries and docu-
ments is a long-standing research topic in information retrieval 
(IR) [2][4][8]. Usually, the contextual information captured by 
models such as TF-IDF, BM25, and topic models, is often too 
coarse-grained to be effective. As an alternative, there are retriev-
al methods such as the phrase-based translation model [5] that 
directly model phrases (or word n-grams), but they often suffer 
from the data sparseness problem. In a separate line of research, 
deep learning based techniques have been proposed for semantic 
understanding[3][6][9][10]. Salakhutdinov and Hinton [9] demon-
strated that the semantic structures can be extracted via a semantic 
hashing approach using a deep auto-encoder. Most recently, a 
Deep Structured Semantic Models (DSSM) for Web search was 

proposed in [6], which is reported to outperform significantly 
semantic hashing and other conventional semantic models.  

In this study, based on a convolutional neural network [1], we 
present a new Convolutional Deep Structured Semantic Models 
(C-DSSM). Compared with DSSM, C-DSSM has a convolutional 
layer that projects each word within a context window to a local 
contextual feature vector. Semantically similar words-within-
context are projected to vectors that are close to each other in the 
contextual feature space. Further, since the overall semantic 
meaning of a sentence is often determined by a few key words in 
the sentence, thus, simply mixing all words together (e.g., by 
summing over all local feature vectors) may introduce unneces-
sary divergence and hurt the effectiveness of the overall semantic 
representation. Therefore, C-DSSM uses a max pooling layer to 
extract the most salient local features to form a fixed-length global 
feature vector. The global feature vector can be then fed to feed-
forward neural network layers, which perform affine transfor-
mations followed by non-linear functions applied element-wise 
over their inputs to extract highly non-linear and effective features.  

2. C-DSSM FOR EXTRACTING CONTEX-
TUAL FEATURES FOR IR 
The architecture of the C-DSSM, is illustrated in Figure 1. The C-
DSSM contains a word hashing layer that transforms each word 
into a letter-tri-gram input representation, a convolutional layer to 
extract local contextual features, a max-pooling layer to form a 
global feature vector, and a final semantic layer to represent the 
high-level semantic feature vector of the input word sequence.  

30k 30k 30k 30k 30k

300 300 300

max max

...

...

... max

300

...

...

128

Word hashing layer: ft

Convolutional layer: ht

Max pooling layer: v

Semantic layer: y

     <s>             w1              w2           …         wT             <s>Word sequence: xt

Word hashing matrix: Wf

Convolution matrix: Wc

Max pooling operation

Affine projection matrix: Ws

... ...

 
Figure 1: Illustration of the C-DSSM. A convolutional layer 

with the window size of three is illustrated. 
In what follows, we describe each layer of the C-DSSM in de-

tail, using the annotation illustrated in Figure 1. 

Copyright is held by the author/owner(s). 
WWW’14 Companion, April 7–11, 2014, Seoul, Korea. 
ACM  978-1-4503-2745-9/14/04. 
http://dx.doi.org/10.1145/2567948.2577348 

❖ Input: encode 
each word as bag 
of letter-trigram

❖ Model: the 
convolutional 
operation in 
CNN compacts 
each sequence of 
k words



Using CNN: ARC-I / CNTN
❖ Input: sequence of word embeddings

❖ Word embeddings from word2vec model train on large dataset

❖ Model: CNN compacts each sequence of k words

Our main contributions can be summarized as follows. First, we devise novel deep convolution-
al network architectures that can naturally combine 1) the hierarchical sentence modeling through
layer-by-layer composition and pooling, and 2) the capturing of the rich matching patterns at dif-
ferent levels of abstraction; Second, we perform extensive empirical study on tasks with different
scales and characteristics, and demonstrate the superior power of the proposed architectures over
competitor methods.

Roadmap We start by introducing a convolution network in Section 2 as the basic architecture for
sentence modeling, and how it is related to existing sentence models. Based on that, in Section 3,
we propose two architectures for sentence matching, with a detailed discussion of their relation. In
Section 4, we briefly discuss the learning of the proposed architectures. Then in Section 5, we report
our empirical study, followed by a brief discussion of related work in Section 6.

2 Convolutional Sentence Model
We start with proposing a new convolutional architecture for modeling sentences. As illustrated
in Figure 1, it takes as input the embedding of words (often trained beforehand with unsupervised
methods) in the sentence aligned sequentially, and summarize the meaning of a sentence through
layers of convolution and pooling, until reaching a fixed length vectorial representation in the final
layer. As in most convolutional models [11, 1], we use convolution units with a local “receptive
field” and shared weights, but we design a large feature map to adequately model the rich structures
in the composition of words.

Figure 1: The over all architecture of the convolutional sentence model. A box with dashed lines
indicates all-zero padding turned off by the gating function (see top of Page 3).

Convolution As shown in Figure 1, the convolution in Layer-1 operates on sliding windows of
words (width k1), and the convolutions in deeper layers are defined in a similar way. Generally,with
sentence input x, the convolution unit for feature map of type-f (among F` of them) on Layer-` is

z(`,f)i
def
= z(`,f)i (x) = �(w(`,f)

ˆ

z

(`�1)
i + b(`,f)), f = 1, 2, · · · , F` (1)

and its matrix form is z(`)i
def
= z

(`)
i (x) = �(W(`)

ˆ

z

(`�1)
i + b

(`)
), where

• z(`,f)i (x) gives the output of feature map of type-f for location i in Layer-`;

• w

(`,f) is the parameters for f on Layer-`, with matrix form W

(`) def
= [w

(`,1), · · · ,w(`,F`)
];

• �(·) is the activation function (e.g., Sigmoid or Relu [7])

• ˆ

z

(`�1)
i denotes the segment of Layer-`�1 for the convolution at location i , while

ˆ

z

(0)
i = xi:i+k1�1

def
= [x

>

i , x

>

i+1, · · · , x

>

i+k1�1]
>

concatenates the vectors for k1 (width of sliding window) words from sentence input x.
Max-Pooling We take a max-pooling in every two-unit window for every f , after each convolution

z(`,f)i = max(z(`�1,f)
2i�1 , z(`�1,f)

2i ), ` = 2, 4, · · · .

The effects of pooling are two-fold: 1) it shrinks the size of the representation by half, thus quickly
absorbs the differences in length for sentence representation, and 2) it filters out undesirable com-
position of words (see Section 2.1 for some analysis).

2

Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering//Proceedings 
of the 24th (IJCAI), Buenos Aires, Argentina, 2015: 1305-1311. 

word embedding
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Using RNN: LSTM-RNN
❖ Input: sequence letter trigrams

❖ Model: long-short term memory (LSTM)

❖ The last output as the sentence representation

Palangi H, Deng L, Shen Y, et al. Deep sentence embedding using long short-term memory networks: Analysis and 
application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 
694-707.

One-hot word 
representation 

Bag of letter-trigrams 

output
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Matching functions

Heuristic: cosine, dot product
Learning: MLP, Neural tensor networks

28



Matching functions (cont’)
❖ Given the representations of two sentences: 𝑥 and 𝑦.

❖ Similarity between these two embeddings:

❖ Cosine Similarity (DSSM, CDSSM, RNN-LSTM)

❖ Dot Product 

❖ Multi-Layer Perception   (ARC-I)

! = 	 $
% 	 & '
$ & |'|

! = #$ 	 & '

! = #$ % #& %
'
( + *& + *$
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Matching functions (cont’)
❖  Neural Tensor Network (CNTN)

! = #$%('$( ):+ , + . '
, + /)
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Performance evaluation based on QA task

❖ Dataset: Yahoo! Answers

❖ Contain 60,564 (question, answer) pairs

❖ Example:

❖ Q: How to get rid of memory stick error of my sony cyber shot?

❖ A: You might want to try to format the memory stick but what is 
the error message you are receiving. 

31



Experimental results

32

❖ Composition focused methods outperformed the baselines

❖ Semantic representation is important

❖ LSTM-RNN is the best performed method 

❖ Modeling the order information does help

Model P@1 MRR
Statistic Random 0.200 0.457

Traditional BM25 0.579 0.726

Comosition
Focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822

32



Extensions to composition focused methods 
❖ Problem: sentence representations are too coarse to conduct exact 

text matching tasks
❖ Experience in IR: combining topic level and word level matching signals usually 

achieve better performances 

❖ Add fine-grained matching signals in composition focused methods

❖ MultiGranCNN: An Architecture for General Matching of Text Chunks on Multiple Levels of Granularity. (Yin W, Schütze T, Hinrich. ACL2015)

❖ U-RAE: Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, (Richard Socher, Eric H. Huang, Jeffrey Pennington, 
Andrew Y. Ng, Christopher D. Manning, NIPS2011)

❖ MV-LSTM: A Deep Arhitecture for Semantic Matching with Multiple Positional Sentence Representations. (Shengxian Wan, Yanyan Lan, Jiafeng 
Guo, Jun Xu, and Xueqi Cheng. AAAI 2016) 33

input

compositional sentence 
representations

matching 
function

add different levels of 
sentence representations



Performance evaluation on QA task

34

Model P@1 MRR
Statistic Random 0.200 0.457

Traditional BM25 0.579 0.726

Comosition
Focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
uRAE 0.398 0.652

MultiGranCNN 0.725 0.840
MV-LSTM 0.766 0.869

❖ MultiGranCNN and MV-LSTM achieved the best performance

❖ Fine-grained matching signals are useful
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Interaction focused methods
❖ Step 1: Construct basic low-level interaction signals

❖ Step 2: Aggregate matching patterns

36

basic 
interaction

input

aggregationcompositional 
interaction



Interaction focused methods will be discussed

❖ ARC II: Convolutional Neural Network Architectures for Matching 
Natural Language Sentences (Hu et al., NIPS’14)

❖ MatchPyramid: Text Matching as Image Recognition. (Liang Pang, 
Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. AAAI 2016) 

❖ Match-SRNN: Modeling the Recursive Matching Structure with 
Spatial RNN. (Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, and 
Xueqi Cheng. IJCAI 2016)

37



ARC-II

Hu B, Lu Z, Li H, et al. Convolutional neural network architectures for matching natural language sentences//Proceedings 

of the Advances in NIPS, Montreal, Canada, 2014: 2042-2050.
38

❖ Let two sentences meet before their own high-level representations mature

❖ Basic interaction: phrase sum interaction matrix

❖ Compositional interaction: CNN to capture the local interaction structure

❖ Aggregation: MLP

Figure 4: Architecture-II (ARC-II) of convolutional matching model

3.3 Some Analysis on ARC-II

Figure 5: Order preserving in 2D-pooling.

Order Preservation Both the convolution
and pooling operation in Architecture-II have
this order preserving property. Generally, z(`)i,j
contains information about the words in SX

before those in z

(`)
i+1,j , although they may be

generated with slightly different segments in
SY , due to the 2D pooling (illustrated in Fig-
ure 5). The orders is however retained in a
“conditional” sense. Our experiments show that
when ARC-II is trained on the (SX , SY , ˜SY )

triples where ˜SY randomly shuffles the word-
s in SY , it consistently gains some ability of
finding the correct SY in the usual contrastive
negative sampling setting, which however does
not happen with ARC-I.

Model Generality It is not hard to show that ARC-II actually subsumes ARC-I as a special case.
Indeed, in ARC-II if we choose (by turning off some parameters in W

(`,·)) to keep the representa-
tions of the two sentences separated until the final MLP, ARC-II can actually act fully like ARC-I,
as illustrated in Figure 6. More specifically, if we let the feature maps in the first convolution layer
to be either devoted to SX or devoted to SY (instead of taking both as in general case), the output
of each segment-pair is naturally divided into two corresponding groups. As a result, the output for
each filter f , denoted z

(1,f)
1:n,1:n (n is the number of sliding windows), will be of rank-one, possessing

essentially the same information as the result of the first convolution layer in ARC-I. Clearly the 2D
pooling that follows will reduce to 1D pooling, with this separateness preserved. If we further limit
the parameters in the second convolution units (more specifically w

(2,f)) to those for SX and SY ,
we can ensure the individual development of different levels of abstraction on each side, and fully
recover the functionality of ARC-I.

Figure 6: ARC-I as a special case of ARC-II. Better viewed in color.

5

6 word embeddings 
from Sx and Sy (N=3)sequence of 

word embeddings

Phrase sum 
interaction matrix

MLPCNN



ARC-II (cont’)
❖ Order preservation 

❖ Both the convolution and pooling have order preserving property

❖ However, the word level matching signals are lost

❖ 2-D matching matrix is construct based on the embedding of the words 
in two N-grams 

Figure 4: Architecture-II (ARC-II) of convolutional matching model

3.3 Some Analysis on ARC-II

Figure 5: Order preserving in 2D-pooling.

Order Preservation Both the convolution
and pooling operation in Architecture-II have
this order preserving property. Generally, z(`)i,j
contains information about the words in SX

before those in z

(`)
i+1,j , although they may be

generated with slightly different segments in
SY , due to the 2D pooling (illustrated in Fig-
ure 5). The orders is however retained in a
“conditional” sense. Our experiments show that
when ARC-II is trained on the (SX , SY , ˜SY )

triples where ˜SY randomly shuffles the word-
s in SY , it consistently gains some ability of
finding the correct SY in the usual contrastive
negative sampling setting, which however does
not happen with ARC-I.

Model Generality It is not hard to show that ARC-II actually subsumes ARC-I as a special case.
Indeed, in ARC-II if we choose (by turning off some parameters in W

(`,·)) to keep the representa-
tions of the two sentences separated until the final MLP, ARC-II can actually act fully like ARC-I,
as illustrated in Figure 6. More specifically, if we let the feature maps in the first convolution layer
to be either devoted to SX or devoted to SY (instead of taking both as in general case), the output
of each segment-pair is naturally divided into two corresponding groups. As a result, the output for
each filter f , denoted z

(1,f)
1:n,1:n (n is the number of sliding windows), will be of rank-one, possessing

essentially the same information as the result of the first convolution layer in ARC-I. Clearly the 2D
pooling that follows will reduce to 1D pooling, with this separateness preserved. If we further limit
the parameters in the second convolution units (more specifically w

(2,f)) to those for SX and SY ,
we can ensure the individual development of different levels of abstraction on each side, and fully
recover the functionality of ARC-I.

Figure 6: ARC-I as a special case of ARC-II. Better viewed in color.
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MatchPyramid
❖ Inspired by image recognition task

❖ Basic interaction: word-level matching matrix

❖ Compositional interaction: hierarchical convolution

❖ Aggregation: MLP

40
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MatchPyramid: the matching matrix
❖ Basic interaction: word similarity matrix

❖ Strength of the word-level matching

❖ Positions of the matching occurs

(a) Indicator (b) Cosine
41
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MatchPyramid: the hierarchical convolution

❖ Compositional interaction: CNN constructs different levels of 
matching patterns, based on word-level matching signals
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Match-SRNN
❖ Spatial recurrent neural network (SRNN) for text matching

❖ Basic interaction: word similarity tensor

❖ Compositional interaction: recursive matching 

❖ Aggregation: MLP

43
Wan S, Lan Y, Guo J, et al. Match-SRNN: Modeling the recursive matching structure with spatial RNN//Proceedings 
of the 25th IJCAI, New York, US, 2016: 1022-1029. 
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Match-SRNN: recursive matching structure

❖ Matching scores are calculated recursively (from top left to bottom right)
❖ All matchings between sub sentences have been utilized 

❖ sat    ←→     balls

❖ The cat    ←→    the dog played

❖ The cat  ←→ The dog played balls

❖ The cat sat    ←→    The dog played

cat

sat

on

dog played balls on

the

the
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The dog played balls on the floor.

The cat sat on the mat.
S1[1:2]
S1[1:3]

S2[1:3]
S2[1:4]



Using spatial GRU (two dimensions)

45

Softmax function is used to 
select connections among these 

four choices softly
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Connection to LCS

❖ Longest common sub-sequence (LCS)

❖ S1: A B C D E

❖ S2: F A C G D

❖ LCS: A C D

❖ Solving LCS with dynamic programming (DP)

❖ Step function:

❖ Backtrace: depends on the selection of “max” operation
46



Connection to LCS
❖ Match-SRNN can be explained with(LCS)

❖ Simplified Match-SRNN

❖ Only exact word-level matching signals

❖ Remove the reset gate r and set hidden dimension to 1

❖ Simplified Match-SRNN simulates LCS

❖ Since that 𝑧 is obtained by SOFTMAX 

❖ Backtrace by the value of 𝑧 in simplified Match-SRNN
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Simulation
❖ Simulation data

❖ Random sampled sequence

❖ Ground truth obtained by DP 

❖ The label is the length of LCS

48

Match-SRNN simulates LCS well!



Real Data
❖ Question: “How to get rid of memory stick error of my sony cyber shot?” 

❖ Answer: “You might want to try to format the memory stick but what is 
the error message you are receiving.”
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Performance evaluations on QA task

❖ Interaction focused methods outperformed the composition focused ones

❖ Low level interaction (word level) signals are also important

❖ Match-SRNN performs the best 

❖ Powerful recursive matching structure

Model P@1 MRR
Statistic Random 0.200 0.457

traditional BM25 0.579 0.726

Composition
focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
uRAE 0.398 0.652

MultiGranCNN 0.725 0.840
MV-LSTM 0.766 0.869

Interaction
focused

DeepMatch 0.452 0.679
ARC-II 0.591 0.765

MatchPyramid 0.764 0.867
Match-SRNN 0.790 0.882
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Outline

❖ Problems with direct methods

❖ Deep matching models for text

❖ Composition focused

❖ Interaction focused

❖ Summary
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Summary
The cat sat on the mat
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Figure 4: Architecture-II (ARC-II) of convolutional matching model

3.3 Some Analysis on ARC-II

Figure 5: Order preserving in 2D-pooling.

Order Preservation Both the convolution
and pooling operation in Architecture-II have
this order preserving property. Generally, z(`)i,j
contains information about the words in SX

before those in z

(`)
i+1,j , although they may be

generated with slightly different segments in
SY , due to the 2D pooling (illustrated in Fig-
ure 5). The orders is however retained in a
“conditional” sense. Our experiments show that
when ARC-II is trained on the (SX , SY , ˜SY )

triples where ˜SY randomly shuffles the word-
s in SY , it consistently gains some ability of
finding the correct SY in the usual contrastive
negative sampling setting, which however does
not happen with ARC-I.

Model Generality It is not hard to show that ARC-II actually subsumes ARC-I as a special case.
Indeed, in ARC-II if we choose (by turning off some parameters in W

(`,·)) to keep the representa-
tions of the two sentences separated until the final MLP, ARC-II can actually act fully like ARC-I,
as illustrated in Figure 6. More specifically, if we let the feature maps in the first convolution layer
to be either devoted to SX or devoted to SY (instead of taking both as in general case), the output
of each segment-pair is naturally divided into two corresponding groups. As a result, the output for
each filter f , denoted z

(1,f)
1:n,1:n (n is the number of sliding windows), will be of rank-one, possessing

essentially the same information as the result of the first convolution layer in ARC-I. Clearly the 2D
pooling that follows will reduce to 1D pooling, with this separateness preserved. If we further limit
the parameters in the second convolution units (more specifically w

(2,f)) to those for SX and SY ,
we can ensure the individual development of different levels of abstraction on each side, and fully
recover the functionality of ARC-I.

Figure 6: ARC-I as a special case of ARC-II. Better viewed in color.
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❖ Order of words

❖ Structure of sentence

❖ Matching function
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Summary (cont’)

❖ Composition  focused

❖ Interaction focused

53



Challenges
❖ Data: building benchmarks

❖ Current: lack of large scale text matching data

❖ Deep learning models have a lot of parameters to learn

❖ Model: leveraging human knowledge
❖ Current: most models are purely data-driven

❖ Prior information (e.g., large scale knowledge base  and other information) should be 
helpful 

❖ Application: domain specific matching models
❖ Current: matching models are designed for a general goal (similarity)

❖ Different applications have different matching goal

❖ For example, in IR, relevance ≠ similarity



Thanks!
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