Deep Approaches to Semantic Matching for Text

Jun Xu

Institute of Computing Technology, Chinese Academy of Sciences junxu@ict.ac.cn

Outline

- Problems with direct methods
- Deep matching models for text
 - Composition focused methods
 - Interaction focused methods
- * Summary

Problems with direct methods

[Problem 1] The order information of words is missing

Bag of words assumption:

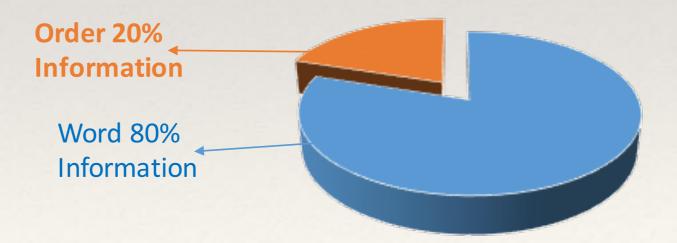
hot dog = dog hot

However:



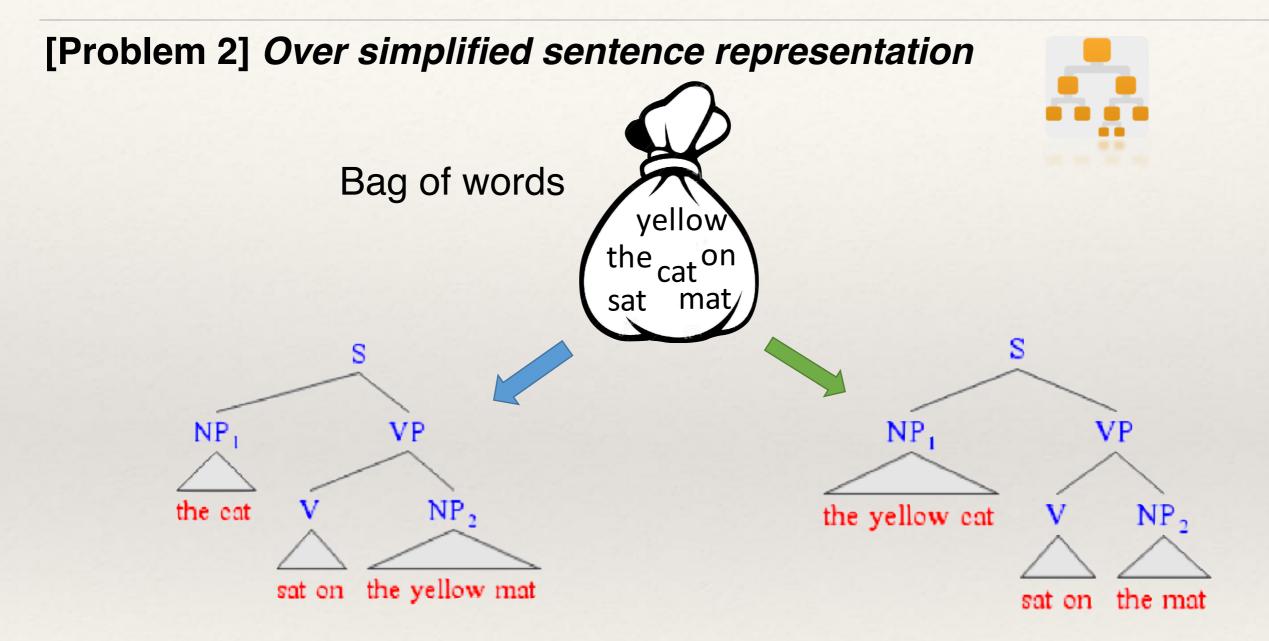
The importance of the words order

- * Assume that comprehension vocabulary is 100,000 words, that sentences are 20 words long, and that word order is important only within sentences.
- Then the contributions, in bits are log₂(100000^20) and log₂(20!) respectively, which works out to over 80% of the potential information in language being in the choice of words without regard to the order in which they appear.



Landauer T K. On the computational basis of learning and cognition: Arguments from LSA[J]. Psychology of learning and motivation, 2002, 41: 43-84.

Problems with direct methods



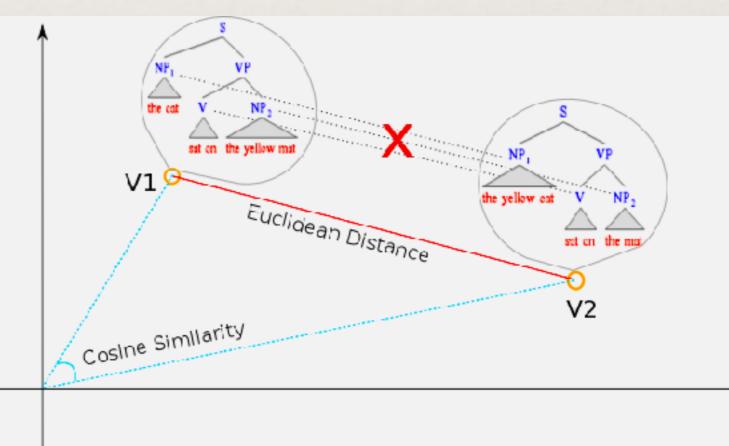
"The cat sat on the **yellow mat** = The **yellow cat** sat on the mat" under bag-of-words assumption

Problems with direct methods

[Problem 3] Heuristic matching function

- * A vector for representing the whole sentence
- Based on distance measures between two vectors
 - * Cosine, Euclidean distance ...

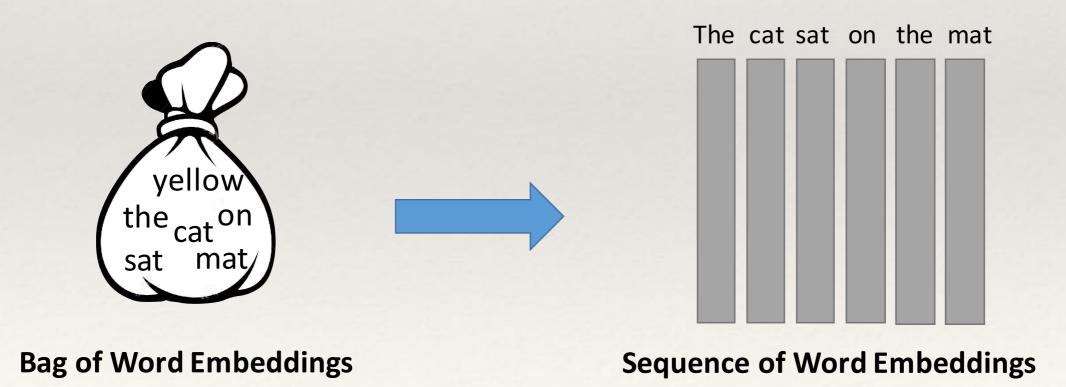
Limited information of two vectors are taken into consideration



How to design deep semantic matching models for text?

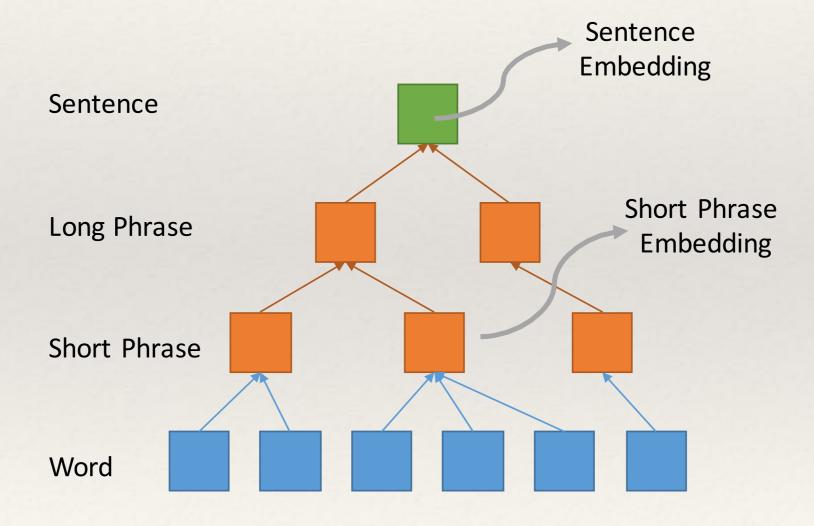
Keeping order information

- A sequence of word embeddings
 - * Convert each word to its embedding (e.g., word2vec)
 - Concatenate embeddings to a sequence



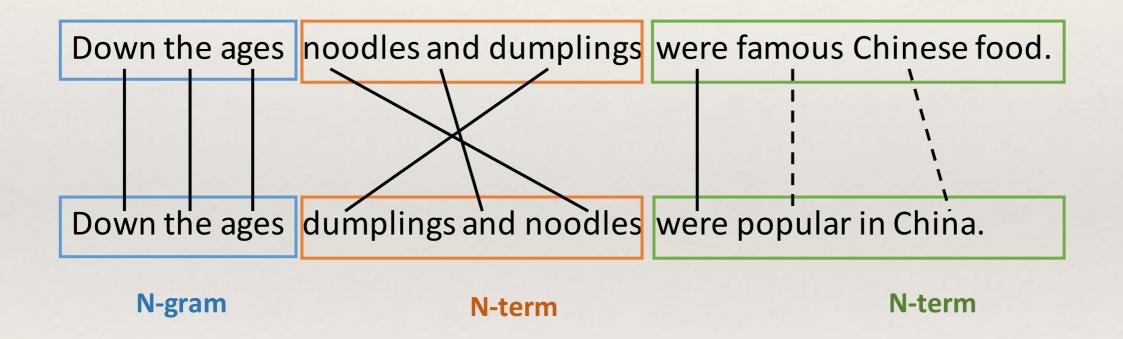
Rich sentence representation

 Hierarchical structure of sentence representation, e.g., different levels of embeddings



Powerful matching function

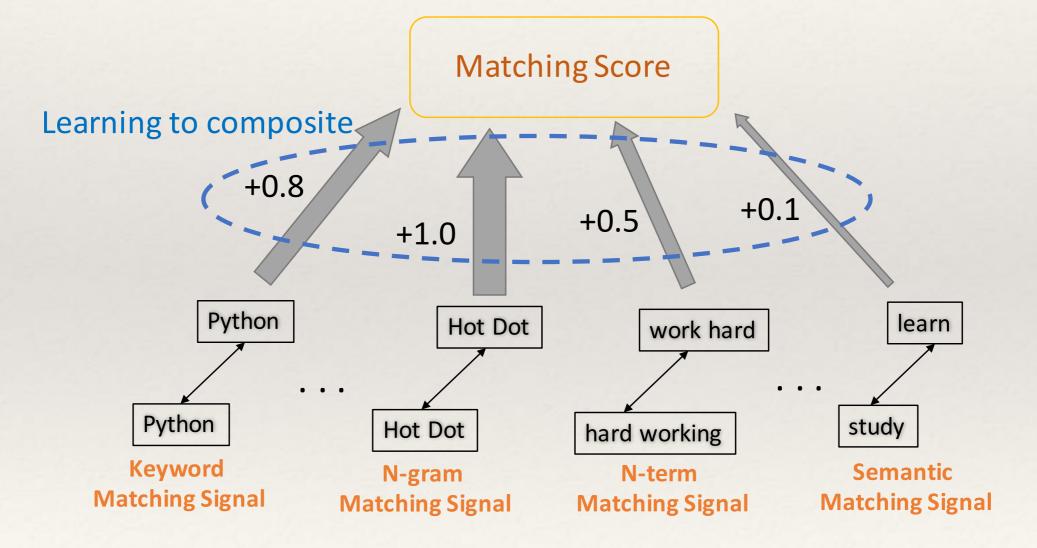
Considering different levels/types of matching signals



Pang L, Lan Y, Guo J, et al. Text matching as image recognition//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016: 2793-2799.

Learning the matching function

* Data-driven approaches to determining the parameters



Outline

- Problems with direct methods
- Deep matching models for text
 - Composition focused
 - Interaction focused
- * Summary

Existing deep text matching models

Composition focused methods

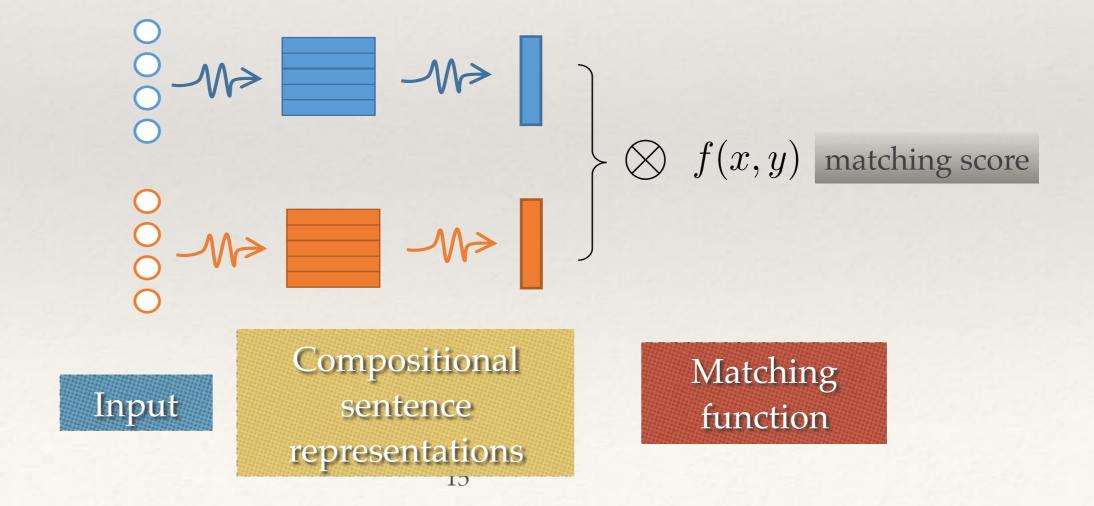
- * [Problem 1: order] [Problem 2: structure]
- Composite each sentence into one embedding
- * Measure the similarity between the two embeddings
- Interaction focused methods

- * [Problem 1: order] [Problem 3: matching function]
- Two sentences meet before their own high-level representations mature
- Capture complex matching patterns

Composition Focused Methods

Composition focused methods

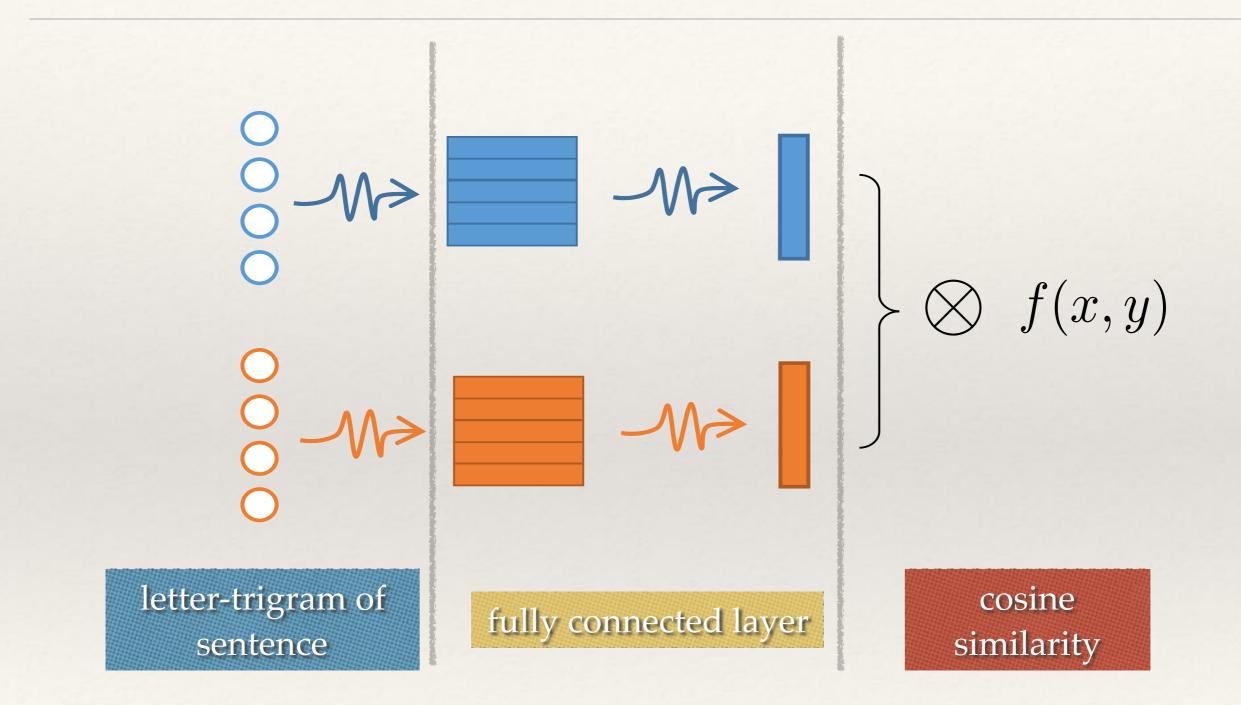
- * Step 1: Composite sentence representation $\phi(x)$
- * Step 2: Matching between the representations $F(\phi(x), \phi(y))$



Composition focused methods will be discussed

- * Based on DNN
 - * DSSM: Learning Deep Structured Semantic Models for Web Search using Click-through Data (Huang et al., CIKM '13)
- * Based on CNN
 - * CDSSM: A latent semantic model with convolutional-pooling structure for information retrieval (Shen Y et al., CIKM '14)
 - ARC I: Convolutional Neural Network Architectures for Matching Natural Language Sentences (Hu et al., NIPS '14)
 - * CNTN: Convolutional neural tensor network architecture for community-based question Answering (Qiu et al., IJCAI '15)
- * Based on RNN
 - * LSTM-RNN: Deep Sentence Embedding Using the Long Short Term Memory Network: Analysis and Application to Information Retrieval (Palangi et al., TASLP '16)

Deep structured semantic model (DSSM)



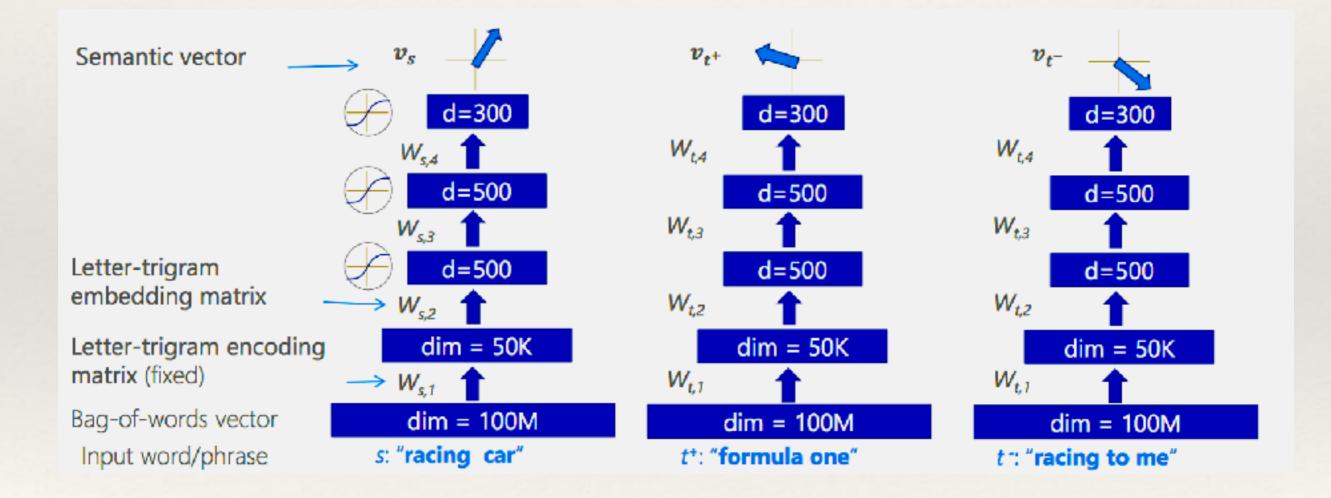
Huang P-S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data//Proceedings of the 22nd ACM international conference on CIKM. Amazon, India, 2013: 2333-2338

DSSM input: letter-trigram

- * Bag of words representation
 - * "candy store": [0 0 0 1 0 0 0 1 0 0 0 ...]
- Letter-trigram representation
 - * "#candy# #store#" \implies #ca | can | and | ndy | dy# | #st | sto | tor | ore | re#
 - * [ooloo...olol...oo...]
- * Advantages:
 - * Compact representation: # words: 500K ⇒ # letter-trigram: 30K
 - Generalize to unseen words
 - Robust to noisy inputs, e.g., misspelling, inflection ...

DSSM sentence representation: DNN

Model: DNN for capturing the compositional sentence representation



19

Figure from He et al., CIKM '14 tutorial

DSSM matching function

* Cosine similarity between semantic vectors $S = \frac{x^T \cdot y}{|x| \cdot |y|}$

* Training

- * A query q and a list of docs $D = \{d^+, d_1^-, \dots, d_k^-\}$
- * d^+ relevant doc, d_1^- , ..., d_k^- irrelevant docs
- * Objective: $P(d^+|q) = \frac{\exp(\gamma \cos(q, d^+))}{\sum_{d \in D} \exp(\gamma \cos(q, d))}$
- Optimizing with SGD

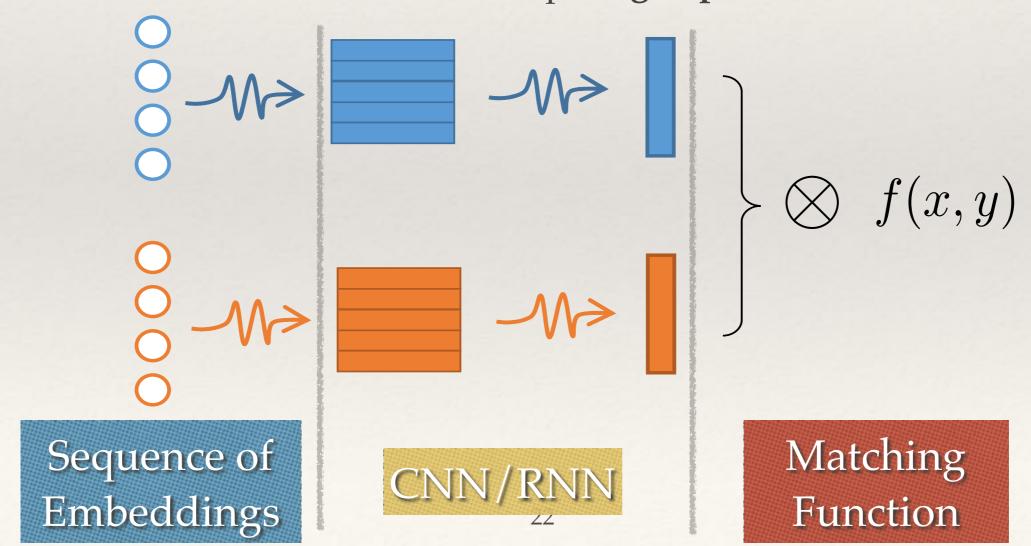
DSSM: short summary

- Input: sub-word units (i.e. letter-trigram) as input for scalability and generalizability
- Representation: mapping sentences to vectors (i.e.
 DNN): semantically similar sentences close to each other
- * Matching: cosine similarity as the matching function

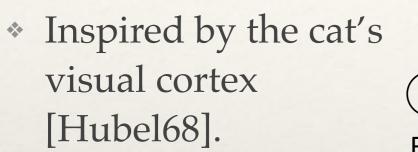
Problem: bag of letter-trigrams as inputs, the order information of words ignored

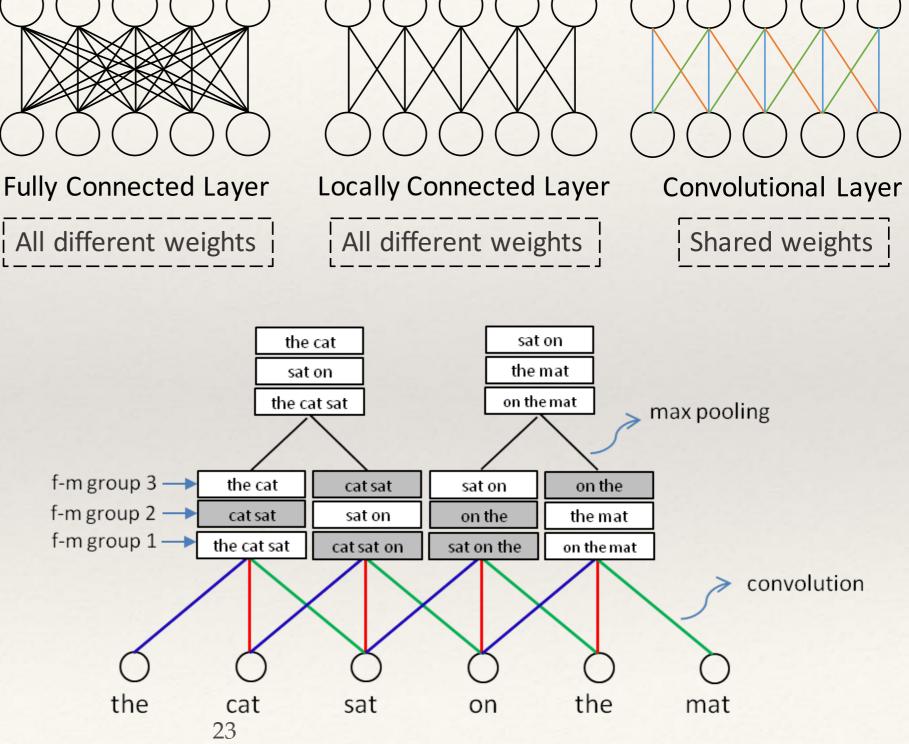
Capturing the order information 🍫

- * Input: word sequence rather than bag of letter-trigrams
- * Model:
 - Convolutional based methods can keep locally order
 - Recurrent based methods can keep long dependence relations



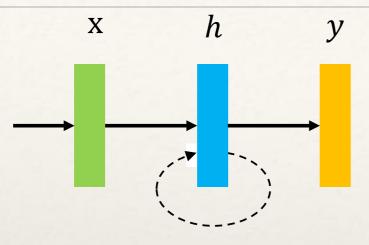
CNN can model the order information



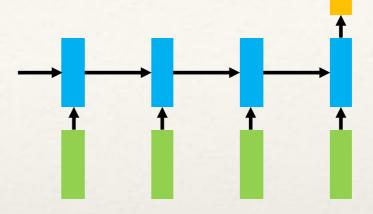


 Convolution & max pooling operations on text

RNN can model the order information



RNN – Self Recurrent Link



Expand RNN

- RNNs implement dynamical systems
- RNNs can approximate arbitrary dynamical systems with arbitrary precision
- Training: back propagation through time

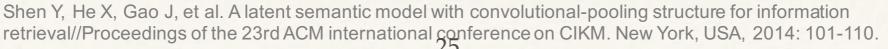
s(t) = f(Uw(t) + Ws(t-1) + b)

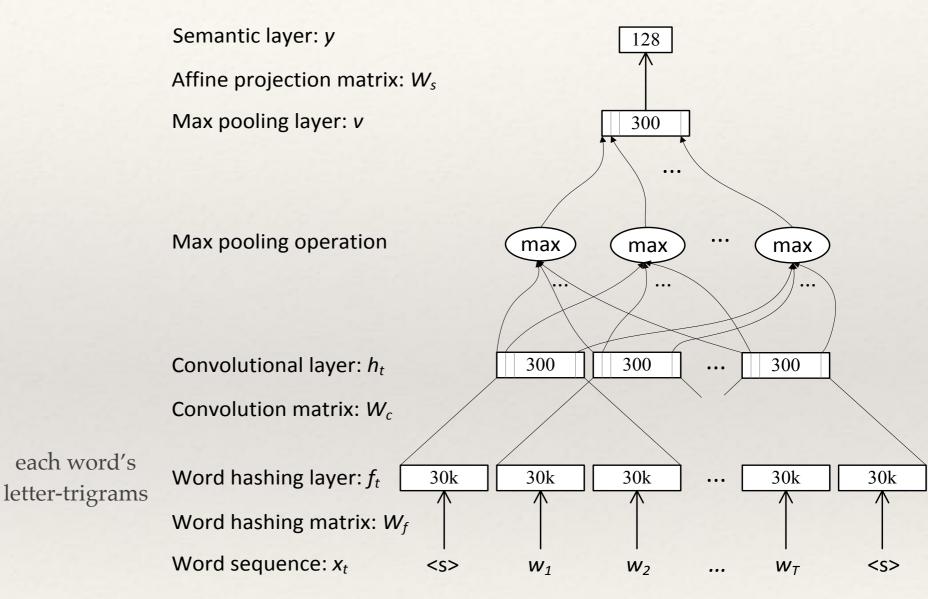
* Two popularly used variations: long-short term memory (LSTM) and gated recurrent unit (GRU)

Using CNN: CDSSM

- Input: encode
 each word as bag
 of letter-trigram
- Model: the convolutional operation in CNN compacts each sequence of k words

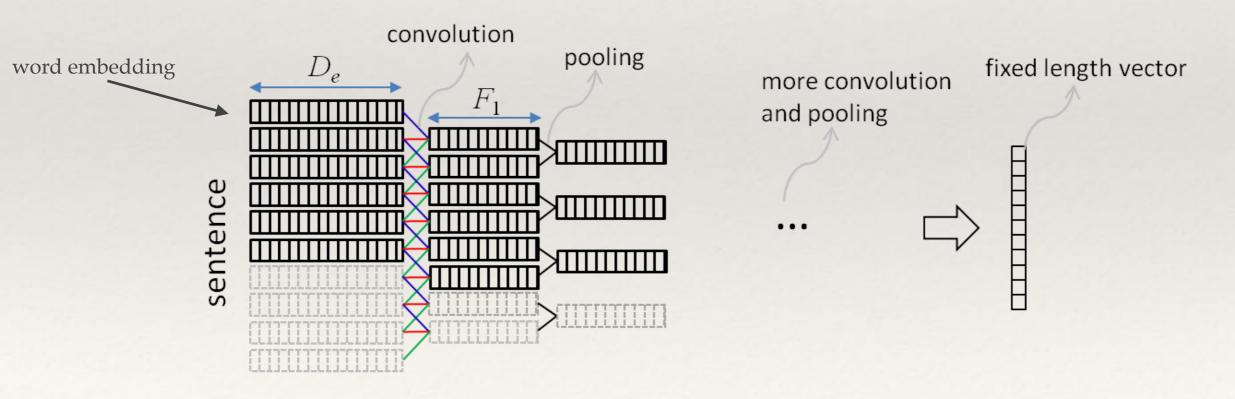
thor/owner(s). ril 7–11, 2014, Seoul, Korea. /14/04. Shen Y, He X, Gao J, et al. A latent 567948.2577348 retrieval//Proceedings of the 23rd A





Using CNN: ARC-I / CNTN

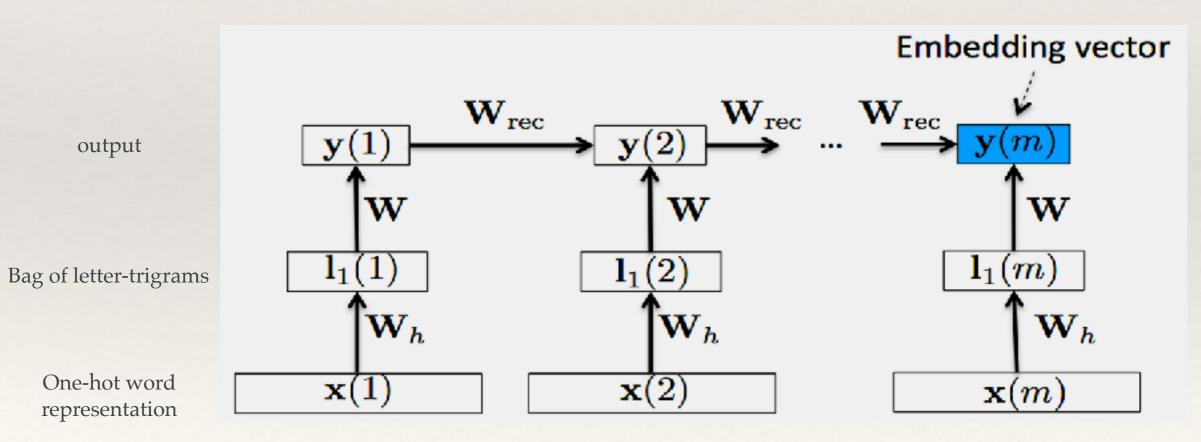
- Input: sequence of word embeddings
 - Word embeddings from word2vec model train on large dataset
- * Model: CNN compacts each sequence of k words



Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering//Proceedings of the 24th (IJCAI), Buenos Aires, Argentina, 2015: 1305-1326.

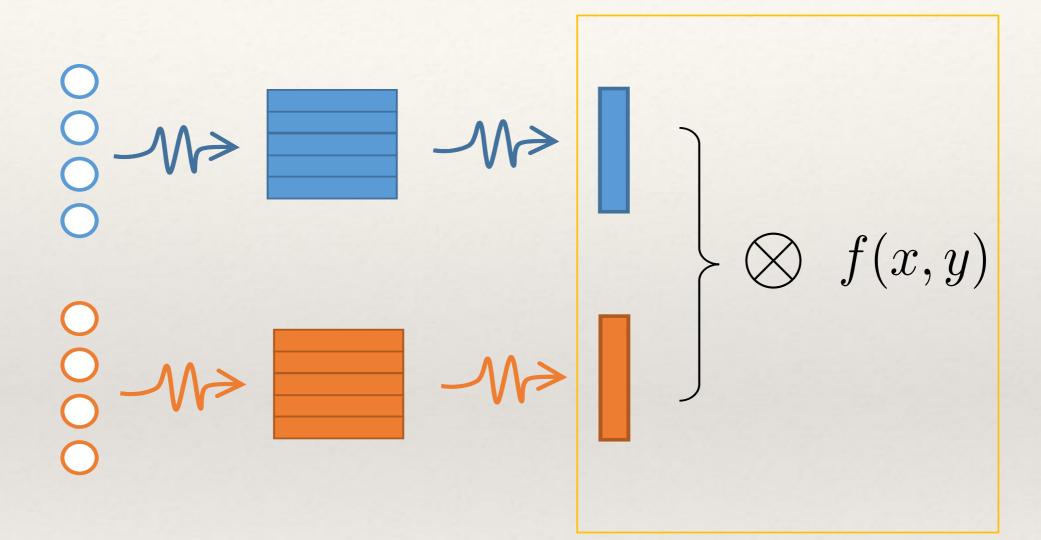
Using RNN: LSTM-RNN

- Input: sequence letter trigrams
- Model: long-short term memory (LSTM)
 - * The last output as the sentence representation



Palangi H, Deng L, Shen Y, et al. Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 27

Matching functions



Heuristic: cosine, dot product Learning: MLP, Neural tensor networks

Matching functions (cont')

- * Given the representations of two sentences: *x* and *y*.
- * Similarity between these two embeddings:
 - * Cosine Similarity (DSSM, CDSSM, RNN-LSTM)

$$S = \frac{x^T \cdot y}{|x| \cdot |y|}$$

Dot Product

$$S = x^T \cdot y$$

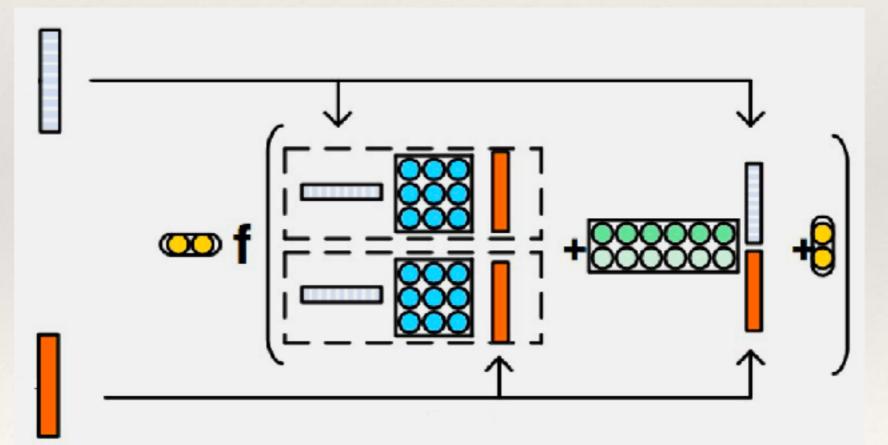
* Multi-Layer Perception (ARC-I)

$$S = W_2 \cdot \left(W_1 \cdot \begin{bmatrix} x \\ y \end{bmatrix} + b_1 \right) + b_2$$

Matching functions (cont')

Neural Tensor Network (CNTN)

$$S = u^T f(x^T M^{[1:r]} y + V \begin{bmatrix} x \\ y \end{bmatrix} + b)$$



Performance evaluation based on QA task

* Dataset: Yahoo! Answers

* Contain 60,564 (question, answer) pairs

- * Example:
 - * *Q*: How to get rid of memory stick error of my sony cyber shot?
 - * A: You might want to try to format the memory stick but what is the error message you are receiving.

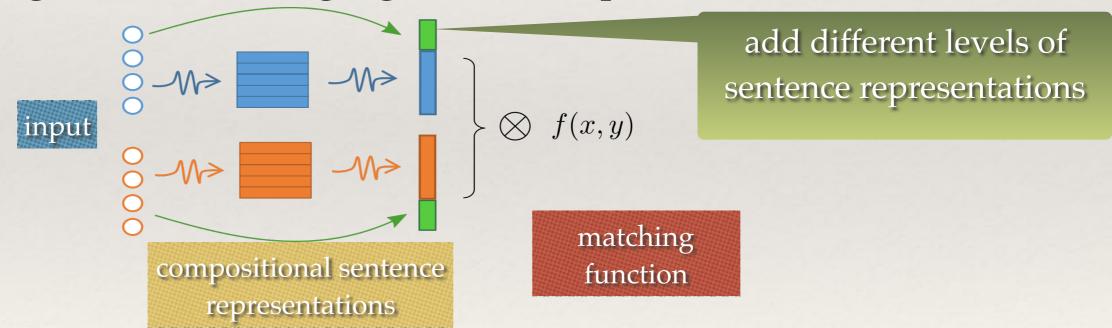
Experimental results

	Model	P@1	MRR
Statistic	Random	0.200	0.457
Traditional	BM25	0.579	0.726
Comosition Focused	ARC-I	0.581	0.756
	CNTN	0.626	0.781
	LSTM-RNN	0.690	0.822

- Composition focused methods outperformed the baselines
 - * Semantic representation is important
- * LSTM-RNN is the best performed method
 - * Modeling the order information does help

Extensions to composition focused methods

- Problem: sentence representations are too coarse to conduct exact text matching tasks
 - Experience in IR: combining topic level and word level matching signals usually achieve better performances
- * Add fine-grained matching signals in composition focused methods



- * MultiGranCNN: An Architecture for General Matching of Text Chunks on Multiple Levels of Granularity. (Yin W, Schütze T, Hinrich. ACL2015)
- U-RAE: Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, (Richard Socher, Eric H. Huang, Jeffrey Pennington, Andrew Y. Ng, Christopher D. Manning, NIPS2011)
- MV-LSTM: A Deep Arhitecture for Semantic Matching with Multiple Positional Sentence Representations. (Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. AAAI 2016)
 33

Performance evaluation on QA task

	Model	P@1	MRR
Statistic	Random	0.200	0.457
Traditional	BM25	0.579	0.726
Comosition Focused	ARC-I	0.581	0.756
	CNTN	0.626	0.781
	LSTM-RNN	0.690	0.822
	uRAE	0.398	0.652
	MultiGranCNN	0.725	0.840
	MV-LSTM	0.766	0.869

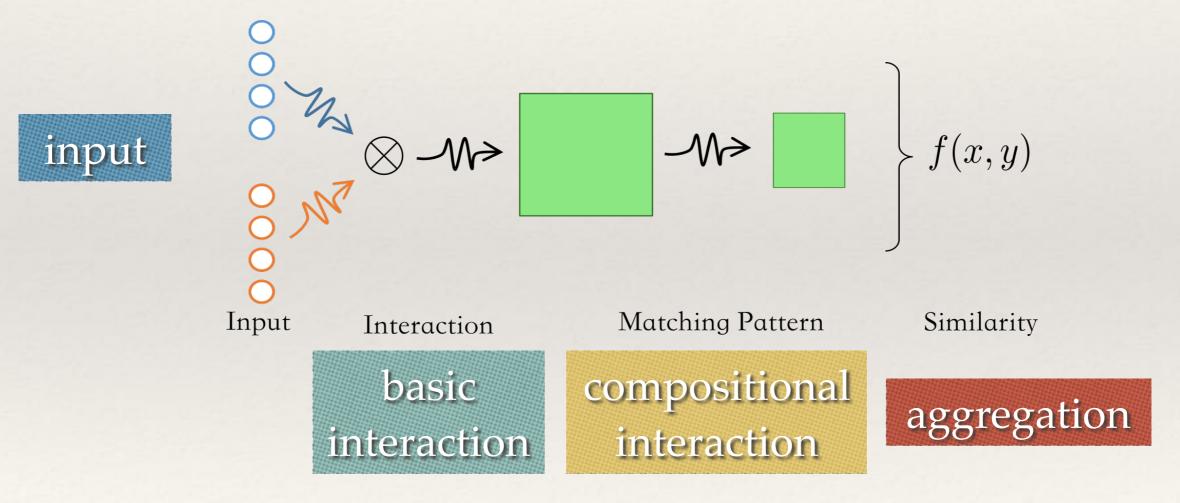
- * MultiGranCNN and MV-LSTM achieved the best performance
 - * Fine-grained matching signals are useful

Outline

- Problems with direct methods
- Deep matching models for text
 - Composition focused
 - Interaction focused
- * Summary

Interaction focused methods

- Step 1: Construct basic low-level interaction signals
- Step 2: Aggregate matching patterns

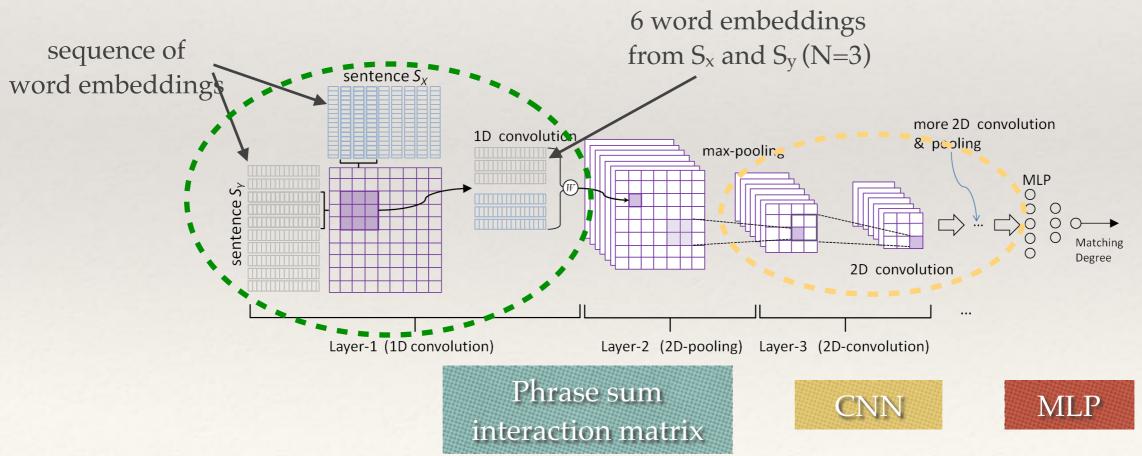


Interaction focused methods will be discussed

- * ARC II: Convolutional Neural Network Architectures for Matching Natural Language Sentences (Hu et al., NIPS'14)
- * MatchPyramid: Text Matching as Image Recognition. (Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. AAAI 2016)
- Match-SRNN: Modeling the Recursive Matching Structure with Spatial RNN. (Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. IJCAI 2016)

ARC-II

- * Let two sentences meet before their own high-level representations mature
- Basic interaction: phrase sum interaction matrix
- * Compositional interaction: CNN to capture the local interaction structure
- * Aggregation: MLP



Hu B, Lu Z, Li H, et al. Convolutional neural network architectures for matching natural language sentences//Proceedings of the Advances in NIPS, Montreal, Canada, 2014: 2042-2050.

ARC-II (cont')

Order preservation

* Both the convolution and pooling have order preserving property

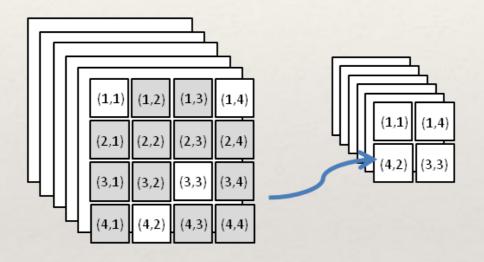
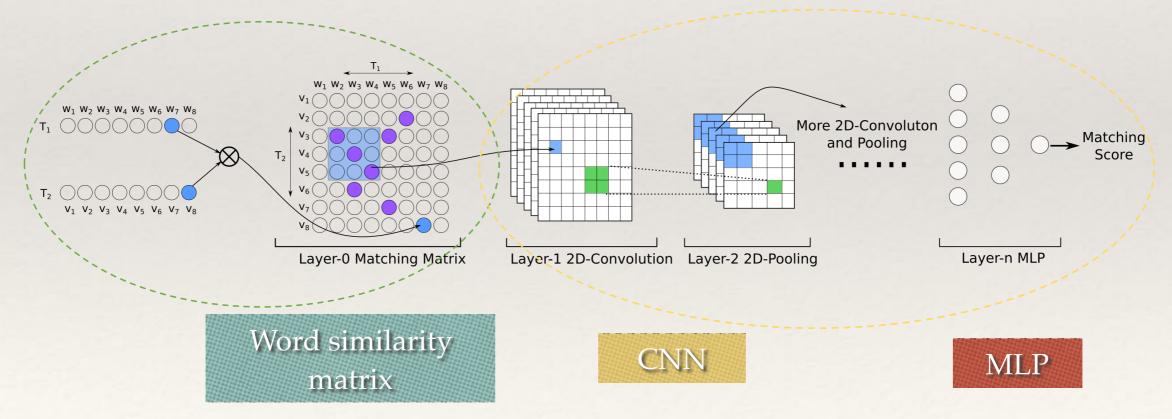


Figure 5: Order preserving in 2D-pooling.

- * However, the **word level matching signals are lost**
 - 2-D matching matrix is construct based on the embedding of the words in two N-grams

MatchPyramid

- Inspired by image recognition task
- Basic interaction: word-level matching matrix
- Compositional interaction: hierarchical convolution
- Aggregation: MLP



Pang L, Lan Y, Guo J, et al. Text matching as image recognition//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix, USA, 2016: 2793-2799₄₀

MatchPyramid: the matching matrix

- Basic interaction: word similarity matrix *
 - Strength of the word-level matching
 - Positions of the matching occurs

noodles

dumplings

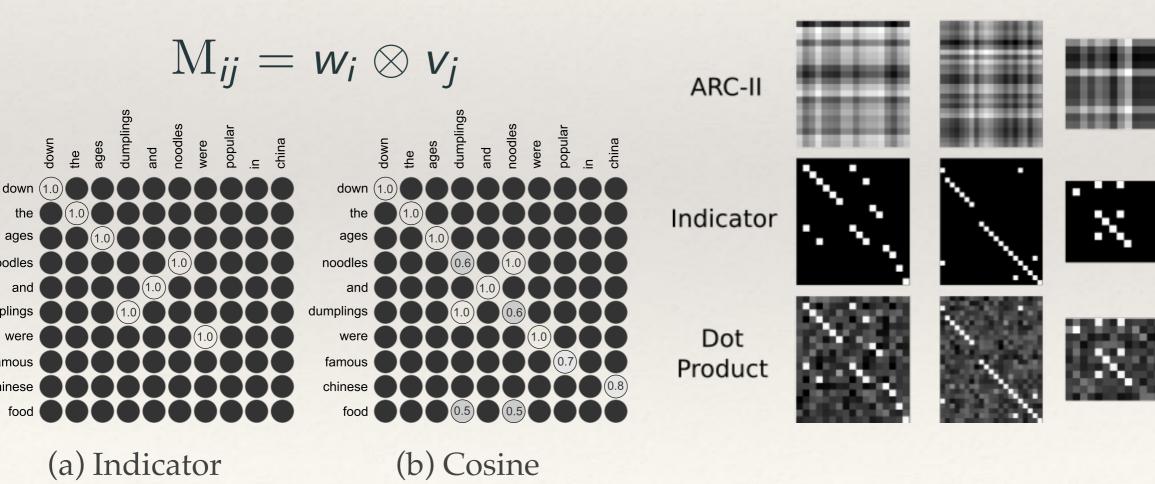
and

were

famous

chinese

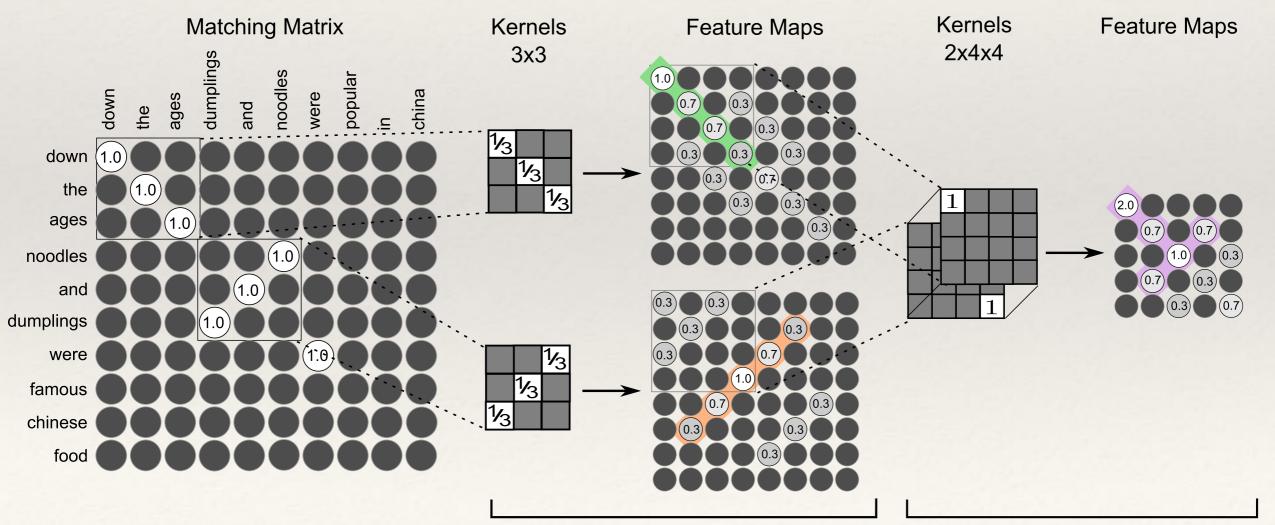
food



Instance 1 Instance 2 Instance 3

MatchPyramid: the hierarchical convolution

* Compositional interaction: CNN constructs different levels of matching patterns, based on word-level matching signals

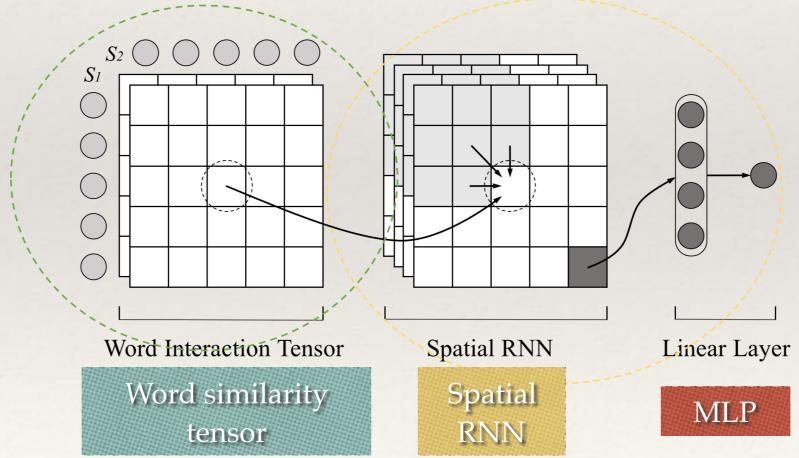


First Convolutional Layer

Second Convolutional Layer

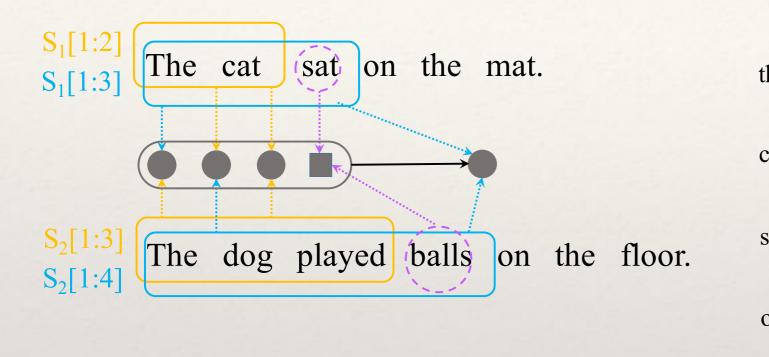
Match-SRNN

- * Spatial recurrent neural network (SRNN) for text matching
- Basic interaction: word similarity tensor
- Compositional interaction: recursive matching
- Aggregation: MLP

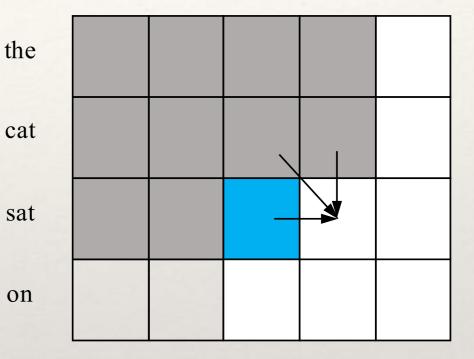


Wan S, Lan Y, Guo J, et al. Match-SRNN: Modeling the recursive matching structure with spatial RNN//Proceedings of the 25th IJCAI, New York, US, 2016: 1022-1029. 43

Match-SRNN: recursive matching structure



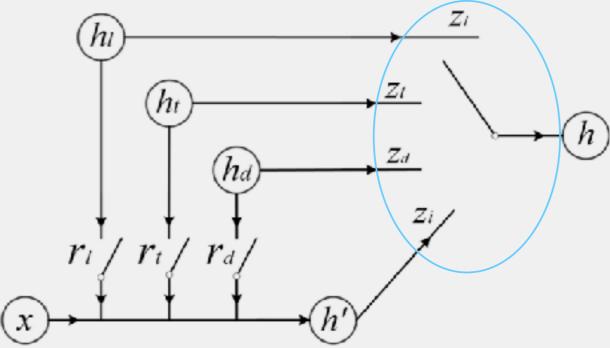
the dog played balls on



* Matching scores are calculated recursively (from top left to bottom right)

- * All matchings between sub sentences have been utilized
 - * sat $\leftarrow \rightarrow$ balls
 - * The cat $\leftarrow \rightarrow$ the dog played
 - * The cat $\leftarrow \rightarrow$ The dog played balls
 - * The cat sat $\leftarrow \rightarrow$ The dog played

Using spatial GRU (two dimensions)



Softmax function is used to select connections among these four choices softly

$$q^{T} = [h_{i-1,j}^{T}, h_{i,j-1}^{T}, h_{i-1,j-1}^{T}, s_{ij}^{T}]^{T},$$

$$r_{l} = \sigma(W^{(r_{l})}q + b^{(r_{l})}),$$

$$r_{t} = \sigma(W^{(r_{d})}q + b^{(r_{d})}),$$

$$r^{T} = [r_{l}^{T}, r_{t}^{T}, r_{d}^{T}]^{T},$$

$$z_{i}^{'} = W^{(z_{l})}q + b^{(z_{l})},$$

$$z_{i}^{'} = W^{(z_{l})}q + b^{(z_{l})},$$

$$z_{d}^{'} = W^{(z_{d})}q + b^{(z_{d})},$$

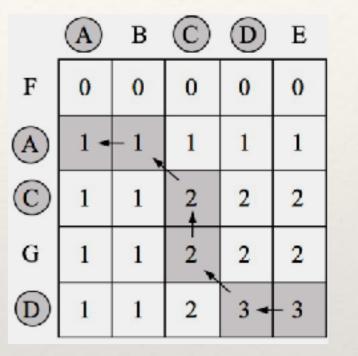
$$[z_{i}, z_{l}, z_{t}, z_{d}] = \text{SoftmaxByRow}([z_{i}^{'}, z_{l}^{'}, z_{t}^{'}, z_{d}^{'}]),$$

$$h_{i,j}^{'} = \phi(Ws_{ij} + U(r \odot [h_{i,j-1}^{T}, h_{i-1,j}^{T}, h_{i-1,j-1}^{T}]^{T}) + b),$$

$$h_{i,j} = z_{l} \odot h_{i,j-1} + z_{t} \odot h_{i-1,j} + z_{d} \odot h_{i-1,j-1} + z_{i} \odot h_{i,j}^{'}.$$

Connection to LCS

- Longest common sub-sequence (LCS)
 - * S1: A B C D E
 - * S2: F A C G D
 - * LCS: A C D
- * Solving LCS with dynamic programming (DP)
 - * Step function: $c[i, j] = \max(c[i, j-1], c[i-1, j], c[i-1, j-1] + \mathbb{I}_{\{x_i = y_j\}})$
 - * Backtrace: depends on the selection of "max" operation



Connection to LCS

- Match-SRNN can be explained with(LCS)
- Simplified Match-SRNN
 - Only exact word-level matching signals
 - * Remove the reset gate r and set hidden dimension to 1

$$h_{ij} = z_l \cdot h_{i,j-1} + z_t \cdot h_{i-1,j} + z_d \cdot h_{i-1,j-1} + z_i \cdot h'_{ij}$$

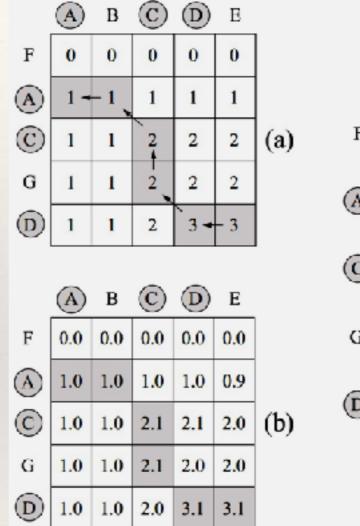
Simplified Match-SRNN simulates LCS

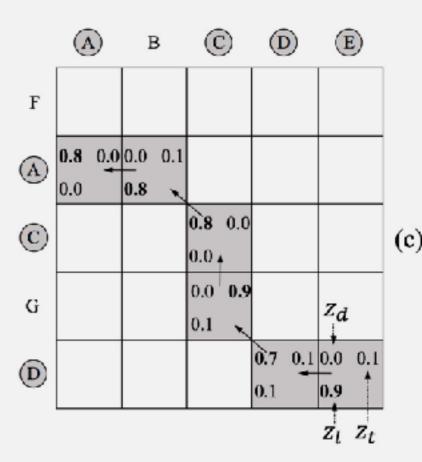
$$c[i,j]\!=\!\max(c[i,j\!-\!1],c[i\!-\!1,j],c[i\!-\!1,j]\!+\!\mathbb{I}_{\{x_i=y_j\}})$$

- Since that *z* is obtained by SOFTMAX
- * Backtrace by the value of *z* in simplified Match-SRNN

Simulation

- Simulation data
 - * Random sampled sequence
 - * Ground truth obtained by DP
 - * The label is the length of LCS

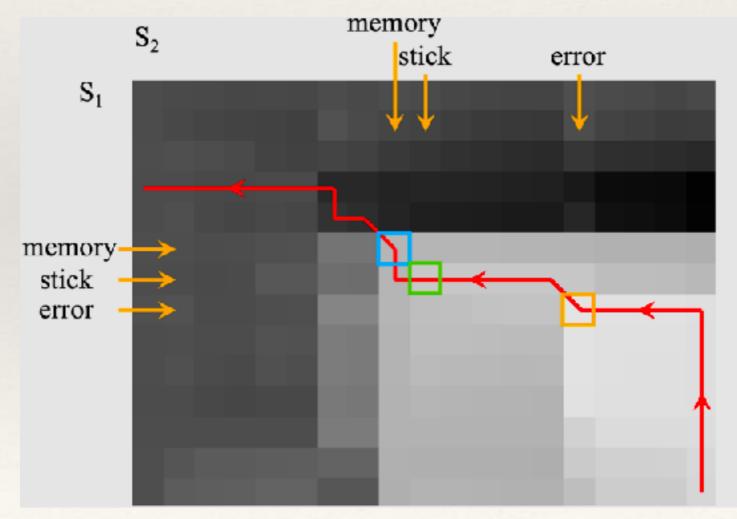




Match-SRNN simulates LCS well!

Real Data

- * *Question*: "How to get rid of memory stick error of my sony cyber shot?"
- * *Answer*: "You might want to try to format the memory stick but what is the error message you are receiving."



Performance evaluations on QA task

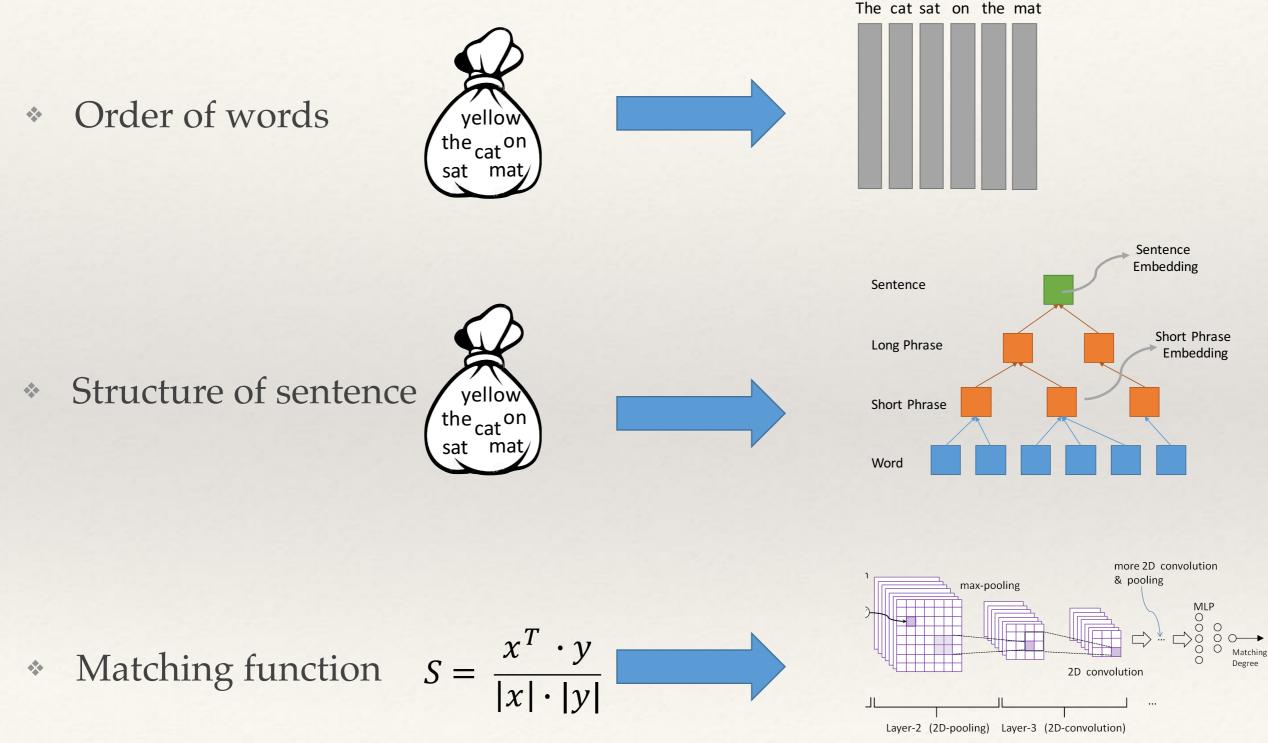
	Model	P@1	MRR	
Statistic	Random	0.200	0.457	
traditional	BM25	0.579	0.726	
Composition focused	ARC-I	0.581	0.756	R
	CNTN	0.626	0.781	
	LSTM-RNN	0.690	0.822	*
	uRAE	0.398	0.652	
	MultiGranCNN	0.725	0.840	
	MV-LSTM	0.766	0.869	
Interaction focused	DeepMatch	0.452	0.679	\backslash
	ARC-II	0.591	0.765	* /
	MatchPyramid	0.764	0.867	K
	Match-SRNN	0.790	0.882	/ *

- * Interaction focused methods outperformed the composition focused ones
 - * Low level interaction (word level) signals are also important
- Match-SRNN performs the best
 - Powerful recursive matching structure

Outline

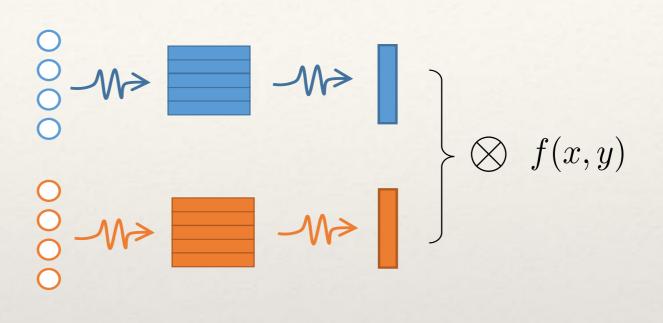
- Problems with direct methods
- Deep matching models for text
 - Composition focused
 - Interaction focused
- Summary

Summary

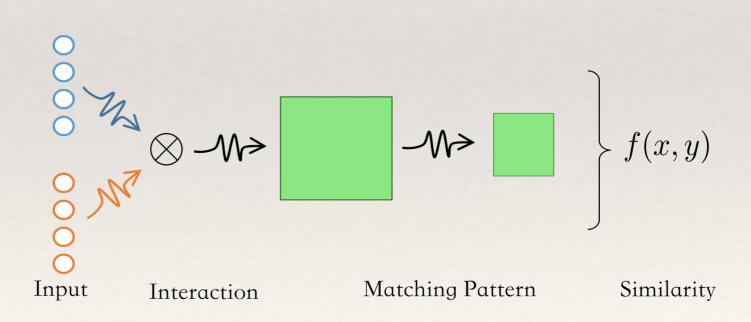


Summary (cont')

Composition focused



Interaction focused



Challenges

- Data: building benchmarks
 - Current: lack of large scale text matching data
 - Deep learning models have a lot of parameters to learn
- Model: leveraging human knowledge
 - Current: most models are purely data-driven
 - Prior information (e.g., large scale knowledge base and other information) should be helpful
- Application: domain specific matching models
 - * Current: matching models are designed for a general goal (similarity)
 - Different applications have different matching goal
 - * For example, in IR, relevance ≠ similarity

Thanks!