

The 4th China-Australia Database Workshop Melbourne, Australia Oct. 19, 2015

Learning to Rank Revisited: Our Progresses in New Algorithms and Tasks

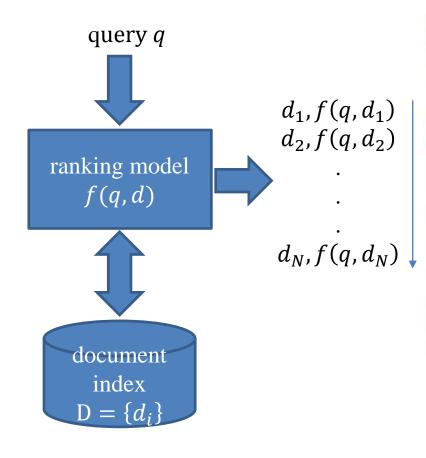
Jun Xu

Institute of Computing Technology, Chinese Academy of Sciences

Outline

- Learning to rank
- Our progresses
 - Improving existing algorithms
 - Adventure with new ranking tasks
- Summary

Ranking in Information Retrieval



Learning to Rank

P

Web 1-10 of 8,430,000 results - <u>Advanced</u> See also: Images, <u>Video, News</u>, <u>Maps^{Bets}, More</u> •

Libra: Learning to rank with non - smooth cost functions

Learning to rank with non - smooth cost functions(2006) (Citation 4) C. Burges R. Ragno Q. Le View or Download: http://research.microsoft.com/~cburges/papers/LambdaRank.pdf Live Search libra.msra.cn/paperdetail.aspx?id=4114251 · <u>Cached page</u>

Query-Level Stability and Generalization in Learning to Rank

Query-Level Stability and Generalization in Learning to Rank We propose anew probabilistic formulation of learning to rank for IR. The formulation can naturally represent the pointwise, pairwiseandlistwise approaches in a unified framework. Within the framework, we introduce the concepts of query-level loss, query-level risk, and particularly query www.amt.ac.cn/member/mazhiming/papers/ma081004-2 pdf - <u>Cached page</u> · PDF file

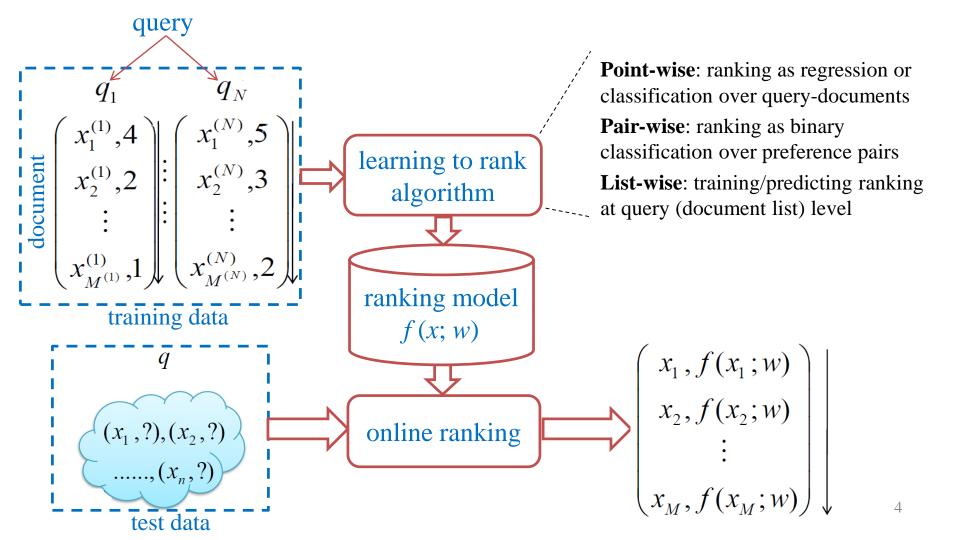
Libra: Learning to rank using classification and gradient boosting

On Using Simultaneous Perturbation Stochastic Approximation for Learning to Rank, and the Empirical Optimality of LambdaRank Yisong Yue One shortfall of existing machine learning (ML) methods when ap-plied to information retrieval (IR) is the inability to directly optimize for typical IR performance measures.

libra msra cn/papercited aspx?id=4114249 - Cached page

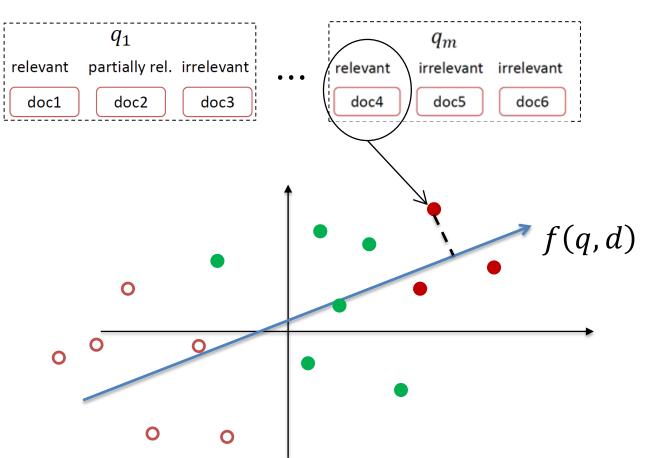
Learning to Rank for Information Retrieval

• Machine learning algorithms for relevance ranking



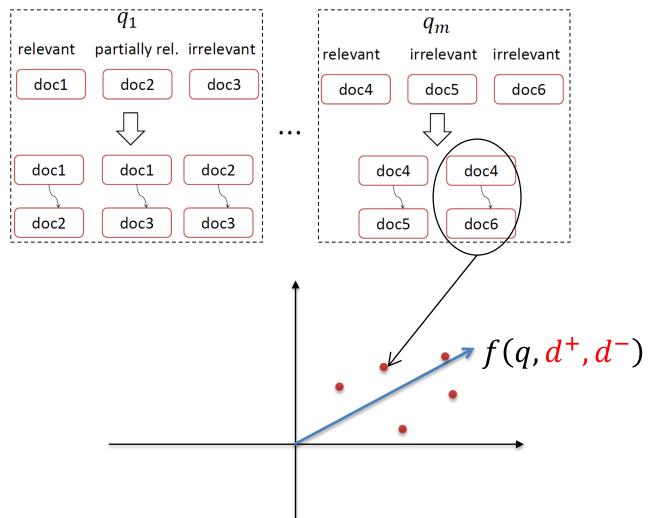
Pointwise Learning to Rank

• Ranking → classification/regression over querydocument pairs [R. Nallapati, SIGIR '04]



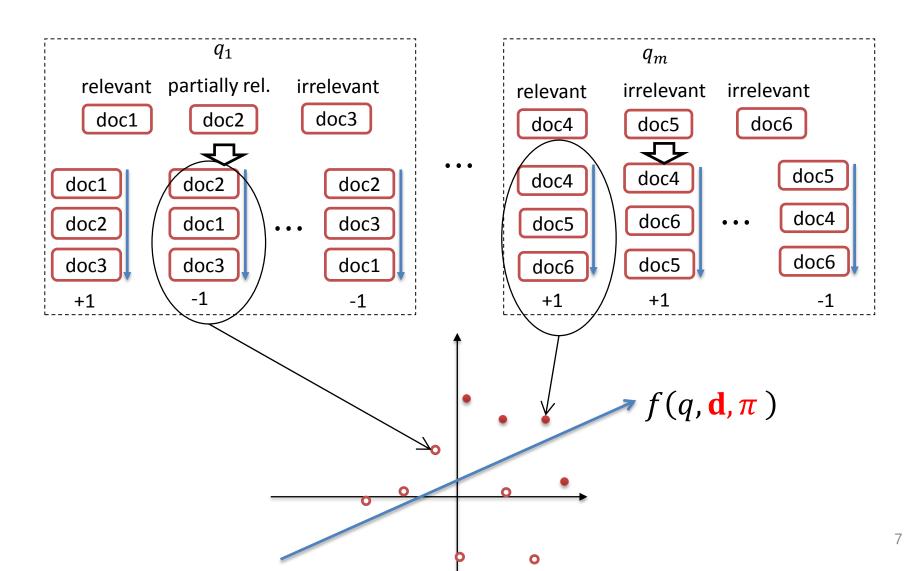
Pairwise Learning to Rank

• Ranking → binary classification over document preference pairs [Joachims, KDD '02; Freund et al., JMLR '03; Cao et al., SIGIR ' 06]



Listwise Learning to Rank

• Ranking \rightarrow query (document list) level ranking prediction



A lot of work

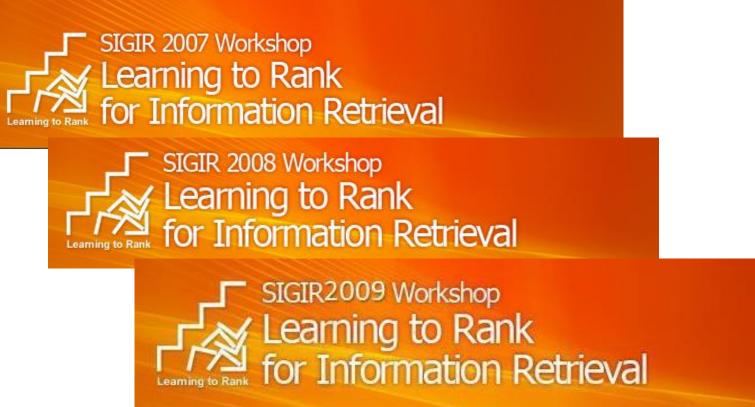
• Publications

Ca	tegor	ization	of the A	Algorit	hms
Category	Algorith	MORGAN	N&CLAYPOOL PUBLISHE	RS	
Pointwise Approach	Regressi Class Pre (COLT 20 Classifica Ordinal I Large Ma	Informatio	to Rank for on Retrieval al Language 5	et Ranking u McRank (NIF ICL 2003), Ra	
Pairwise Approach	Learning Ranking (ICML 20 (NIPS 20	Hang Li	Te Tan Lia		IIPS 1998), RankNet , QBRank
Listwise Approach	Listwise (ICML 20 Direct of SVM-MA 2007),	SYNTHESIS LECTU HUMAN LANGUAG Granue Himt, Serie Edour	Learning t Informatio	o Rank for	7), ListMLE SIGIR 2007), A (SIGIR

Benchmarks

LETOR	LETOR: Learning to Rank for Information	Retrieval	
• Home	This website is designed to facilitate research in LEarning TO Rank	and Barden and Barden and Balance	
Microsoft Learning to Rank Datasets Datasets Download Feature List Yahoo! Learning to Rank	We release two large scale datasets for research on learni 30,000 queries and a random sampling of it MSLR-WEBIC	ing to rank: MSLR-WEB30k with more than • Introduction	
Challenge Introduction	Dataset Descriptions The datasets are machine lear Яндекс	Feature List	
LETOR 4.0 Datasets Baselines Download	consist of feature vectors extra	<u>компания</u> → интернет-математика ^т ^{ддреса.}	телефоны и схемы проезда
LETOR 3.0 Datasets Baselines	(1) The relevance judgments a engine (Microsoft Bing), which(2) The features are basically e	Task and Datasets	
Download Resources	In the data files, each row corr pair, the second column is que	Task description The task of the 'Internet Mathematics 2009' contest is to obtain a document ranking formula using machine learn vectors of query-document pairs and relevance judgments made by Yandex assessors – are used for learning and	
	relevance label has, the more dimensional feature vector. Th	Data set	
	Below are two rows from MSL	Within 'Internet Mathematics 2009' we distribute real relevance tables that are used for learning ranking formula a computed and normalized features of query-document pairs as well as relevance judgments made by Yandex ass original queries or URLs of original documents, semantics of the features is not revealed (features are just number presented in the table are <u>TF*IDF</u> , <u>PageRank</u> , query length in words.	sessors. The tables do not contain
	0 qid:1 1:3 2:0 3:2 4:2 135:0 2 qid:1 1:3 2:3 3:0 4:0 135:0 =================	Data set is divided into two files – learning set (imat2009_learning.txt) and test set (imat2009_test.txt). File with i that correspond to 9 124 queries. Test set (115 643 lines) is divided into two parts – the first one for the prelimina lines), the second one for final evaluation (the rest). The breakdown of the data set looks as follows: 45% - learni final testing. Each line in the data files corresponds to a query-document pair. All features are either binary – pos continuous. Values of continuous features are mapped to the range [0, 1]. Each query-document pair is describer represented in <u>SVM</u> [[dot] format. If feature value is equal to zero it is omitted. Query ID is indicated as comment as	ary public evaluation (the first 21 10 ing, 10% - public testing, and 45% ssess the value from {0, 1}, or ad by 245 features. Data are
		contains relevance judgments with values from range [0, 4] (4 – 'highly relevant', 0 – 'irrelevant'). More formally file format of the learning set looks as follows:	
		.=, <relevance> <feature>:<value> <feature>:<value> <feature>:<value> # <queryid> <relevance> .=, <float> <feature> =, <integer> <value> =, <float></float></value></integer></feature></float></relevance></queryid></value></feature></value></feature></value></feature></relevance>	

Workshops and Tutorials



LETOR Learning to Rank for Information Retrieval

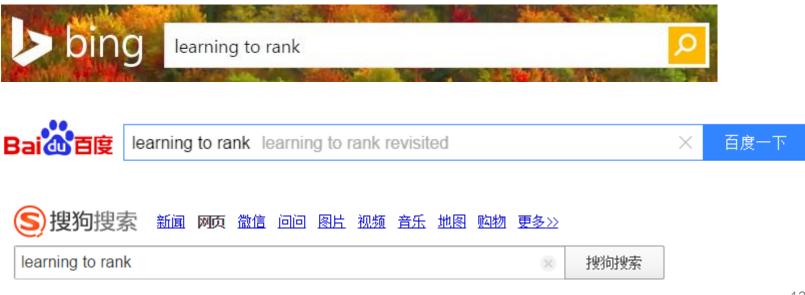
A tutorial at WWW 2009

Tools

Cornell			SVM ^{rank} Cornell			
		nor: <u>Thorste</u> Depar	or Machine for Ranking <u>m_Ioachims <thorsten@joachims.org< u="">> <u>Cornell University</u> <u>otment of Computer Science</u></thorsten@joachims.org<></u>			
Overview	The basic idea of AdaRank is con queries and linearly combining t minimizes a loss function directly found in the paper "AdaRank: A Details News (08/12/2013): RankLib is now a part of The Lemur Project, which develops search engines, browser toolb support research and development of information retrieval and text mining software, including Indri and Galago s					
	Type File Name Version Date Published Download Size	Download AdaRank.zip 1.0 11 April 2011 0.89 MB	I am still managing RankLib and will continue to do so. And I now have a proper channel for bug reports, feature requests license is still BSD, as most (if not all) of the softwares in The Lemur Project. Please visit <u>the new home</u> of RankLib for more details. Overview RankLib is a library of learning to rank algorithms. Currently eight popular algorithms have been implemented:			
			 MART (Multiple Additive Regression Trees, a.k.a. Gradient boosted regression tree) [6] RankNet [1] RankBoost [2] AdaRank [3] 			

Adopted by Commercial Search Engines

 A number of commercial search engines used learning to rank as their core ranking models
 – LambdaMART



Enough?

• Not yet!

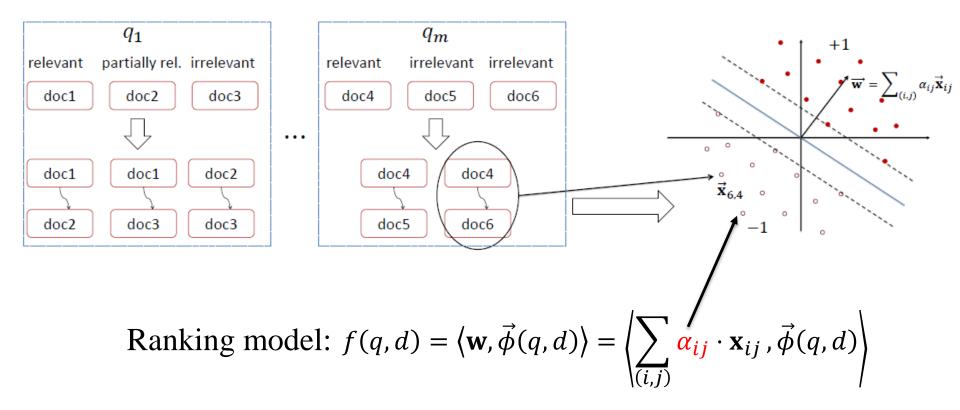
. . .

- Existing algorithms are not perfect (from both practical and theoretical views)
 - Violate machine learning assumptions (for making the formulation feasible)
- Few algorithms for ranking tasks other than relevance ranking
 - Search result diversification
 - Incorporating human knowledge

Outline

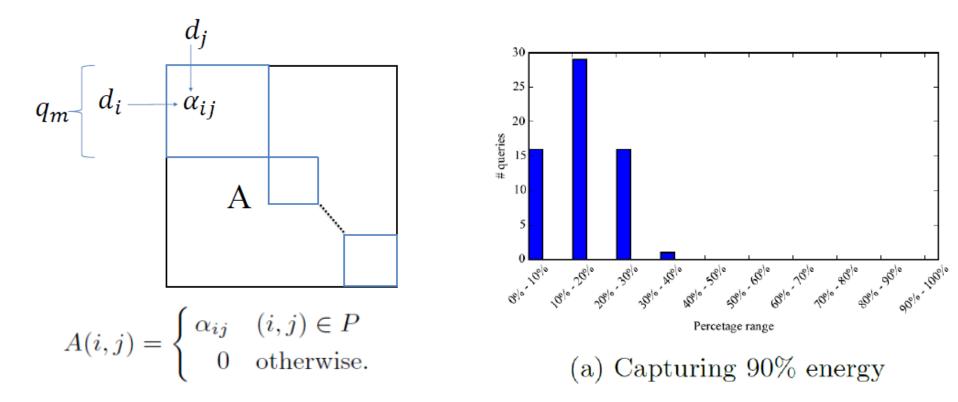
- Learning to rank
- Our progresses
 - Improving existing algorithms
 - Adventure with new ranking tasks
- Summary

Ranking SVM [Joachims, KDD '02]



Motivation: There exist significant interactions among the training pairs, e.g., (doc1, doc2) and (doc1, doc3) share doc1. Whether there also exist interactions among model parameters? How to utilize the interactions if the answer is yes?

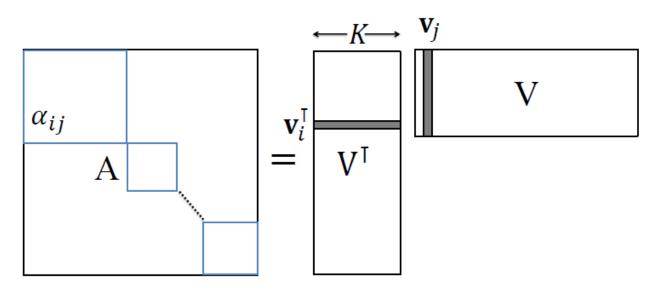
Low Rank Structure in Model Parameters



A: doc-doc matrix, O(N²) parameters
Block diagonal, each block corresponds to a query

Factorized Ranking SVM [Zhang et al., CIKM '15]

• Directly modeling the low rank structure $\alpha_{ij} = \langle \boldsymbol{v}_i, \boldsymbol{v}_j \rangle$



- V: doc-latent matrix, O(KN) parameters
- K: number of latent dimensions

$$\mathbf{w} = \sum_{(i,j)} \boldsymbol{\alpha}_{ij} \cdot \mathbf{x}_{ij} = \sum_{(i,j)} \langle \mathbf{v}_i, \mathbf{v}_j \rangle \cdot \mathbf{x}_{ij}$$

Loss Functions

• Ranking SVM loss function

$$\min_{\boldsymbol{w}\in\mathcal{R}^n}\frac{1}{2}||\boldsymbol{w}||^2 + C\sum_{(i,j)\in P}\left[1-\langle \boldsymbol{w},\boldsymbol{x}_i-\boldsymbol{x}_j\rangle\right]_+$$

• Factorized Ranking SVM loss function

$$\begin{array}{c|c} \min_{v_1, \cdots, v_N} \frac{1}{2} \left\| \sum_{(i,j) \in P} \langle v_i, v_j \rangle (x_i - x_j) \right\|^2 + C \sum_{(k,l) \in P} \left[1 - \left\langle \sum_{(i,j) \in P} \langle v_i, v_j \rangle (x_i - x_j), x_k - x_l \right\rangle \right]_+ \\
\begin{array}{c} \text{new parameters} \\ \text{w} \end{array} \right] \\
\end{array}$$

Experiments

- Based on Letor datasets
- Outperformed all baselines including Ranking SVM
- More improvements can be achieved on datasets with denser preference pairs (OHSUMED)

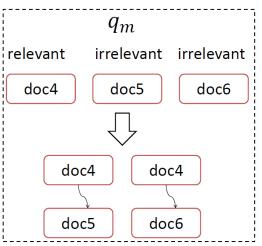
Results on OHSUMED (dense preference pairs)						Results on	MQ200	08 (sparse	e preferer	nce pairs)
	MAP	NDCG@1	NDCG@3	NDCG@5			MAP	NDCG@1	NDCG@3	NDCG@5
RSVM	0.4427	0.5289	0.4553	0.4392		RSVM	0.4713	0.3686	0.4277	0.4730
RankNet	0.404	0.4007	0.3616	0.3388		RankNet	0.4522	0.3414	0.3991	0.4500
ListNet	0.4443	0.5134	0.4664	0.4530		ListNet	0.4415	0.3244	0.3916	0.4396
Fac-RSVM	0.4463	0.5507	0.4798	0.4546		Fac-RSVM	0.4714	0.3660	0.4289	0.4731

Summary

- There exists interactions over the training pairs in pairwise learning to rank
- The interactions lead to low rank structure among the Lagrange multipliers
- Explicitly model the low rank structure (Factorized Ranking SVM)
 - Improve ranking accuracies
 - Reduce the number of parameters $O(N^2) \rightarrow O(KN)$

Discussion

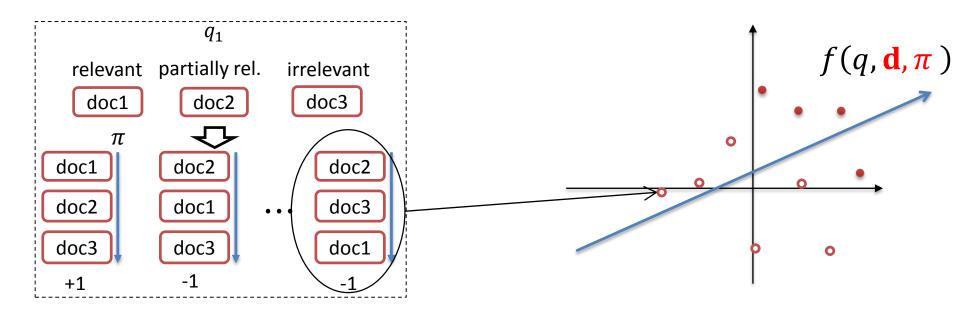
- Parameter interactions exist in a lot of learning to rank algorithms
 - Violate I.I.D. assumption to make formalization and optimization feasible
- Other Pairwise learning to rank algorithms



Pair (doc4, doc5) and (doc4, doc6) share one document doc4.

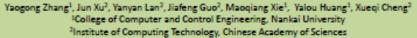
Discussion

- Listwise learning to rank
 - Generate "positive" and "negative" rankings as training data. The training instances have interactions.

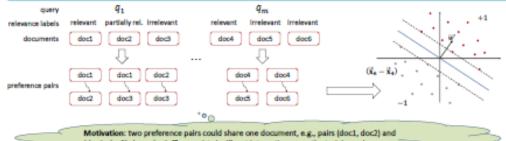


Training lists from one query are based on the same set of the documents.

Modeling Parameter Interactions in Ranking SVM

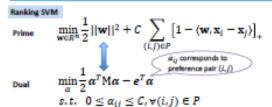


1. Pairwise learning to rank: ranking as binary classification over preference pairs

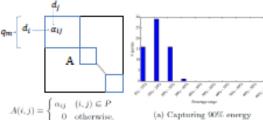


(doc1, doc3) share doc1. There exist significant interactions over the training pairs.

2. Parameter interactions in Ranking SVM

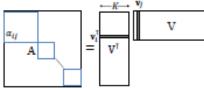


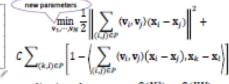
Low rank structure among Lagrange multipliers a_{U}



3. Factorized Ranking SVM

Directly modeling the low rank structure: $\alpha_{ij} = \langle v_i, v_j \rangle$





Number of parameters: $O(N^2) \rightarrow O(KN)$

4. Experiments

Results on	OHSUN	ED (dens	e preferer	Results or	MQ20	08 (spara	e preferer	oe pairs	
	MM2	NDCG@1	NDCG@3	NDCG@5		MAP	NDCG@1	NDCG@3	NDCG@S
RSVM	0.4427	0.5289	0.4553	0.4392	RSVM	0.4713	0.3686	0.4277	0.4730
RankNet	0.404	0.4007	0.3616	0.3388	RankNet	0.4522	0.3414	0.3991	0.4500
ListNet	0.4443	0.5134	0.4664	0.4530	ListNet	0.4415	0.3244	0.3916	0.4396
Fec-RSVM	0.4463	0.5507	0.4798	0.4546	Fac-RSVM	0.4714	0.3660	0.4289	0.4731

Factorized Ranking SVM outperformed all baselines including Ranking SVM.
 More improvements can be achieved on datasets with denser preference pairs.

5. Conclusion

1)	There exists a low-rank structure among the
	Lagrange multipliers of Ranking SVM.
2)	Factorized Ranking SVM decomposes each
	Lagrange multiplier as a dot product of two
	low-dimensional vectors.
3)	Factorized Ranking SVM decreases space
	complexities from $O(N^2)$ to $O(KN)$.
4)	Experimental results showed that Factorized
1	Ranking SVM outperformed all baselines.

Outline

- Learning to rank
- Our progresses
 - Improving existing algorithms
 - Adventure with new ranking tasks
- Summary

Existing Work Focuses on Relevance Ranking

Categorization of the Algorithms

Category	Algorithms
Pointwise Approach	Regression: Least Square Retrieval Function (TOIS 1989), Regression Tree for Ordinal Class Prediction (Fundamenta Informaticae, 2000), Subset Ranking using Regression (COLT 2006), Classification: Discriminative model for IR (SIGIR 2004), McRank (NIPS 2007), Ordinal regression: Pranking (NIPS 2002), OAP-BPM (EMCL 2003), Ranking with Large Margin Principles (NIPS 2002), Constraint Ordinal Regression (ICML 2005),
Pairwise Approach	Learning to Retrieve Information (SCC 1995), Learning to Order Things (NIPS 1998), Ranking SVM (ICANN 1999), RankBoost (JMLR 2003), LDM (SIGIR 2005), RankNet (ICML 2005), Frank (SIGIR 2007), MHR(SIGIR 2007), GBRank (SIGIR 2007), QBRank (NIPS 2007), MPRank (ICML 2007), IRSVM (SIGIR 2006),
Listwise Approach	Listwise loss minimization: RankCosine (IP&M 2008), ListNet (ICML 2007), ListMLE (ICML 2008), Direct optimization of IR measure: LambdaRank (NIPS 2006), AdaRank (SIGIR 2007), SVM-MAP (SIGIR 2007), SoftRank (LR4IR 2007), GPRank (LR4IR 2007), CCA (SIGIR 2007),

- A single scoring function for all queries, documents, and ranking positions
- Score for one document is independent of other documents
- Scores independent of ranking positions

Search Result Diversification

提約 - 汽车 - 网易 product.auto.163.com/brand/1711.html → 撞約 (jaguar) 是塔塔汽车集团旗下品牌,品牌起源于英国。撞約品牌热门车型包括撞 約/F、撞約/XJ、撞約/F.TYPE、撞約/XR等。网易汽车为您提供撞約全线车型、最新.....

俄总理首访公投后克里米亚俄决定划为经济特区 - 国际 - 环球网 world.huanqu.com,国际新闻,独家 *

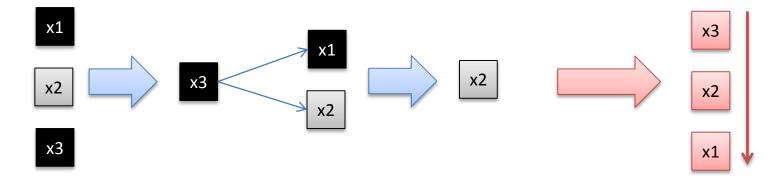
2014年4月1日 - 梅德韦杰夫访问<mark>克里米亚</mark>,他是在公投并入俄罗斯后第一个访问该地区的 俄罗斯领导人。

MMR for Search Result Diversification

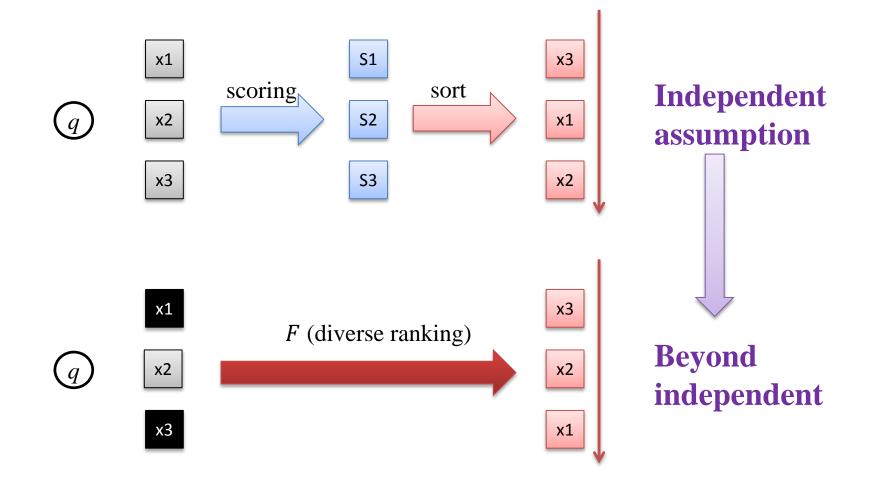
- Maximal Marginal Relevance (MMR) [Carbonell & Goldstein, SIGIR '98]
 - Scoring: query-doc relevance + doc-doc similarity

$$MMR \stackrel{\text{\tiny def}}{=} \operatorname{Arg}_{D_i \in \mathbb{R} \setminus S} [\lambda \underbrace{\operatorname{Sim}_1(D_i, Q)}_{i, Q} - (1 - \lambda) \underbrace{\operatorname{max}_{D_j \in S} Sim_2(D_i, D_j)}_{\operatorname{Similarity}}]$$
relevance similarity

- Ranking: sequential document selection



Beyond Independent Assumption



Learning to Rank Model for Diversification

• Scoring function: relevance + similarity

$$f_{S}(\mathbf{x}_{i}, R_{i}) = \underbrace{\boldsymbol{\omega}_{r}^{T} \mathbf{x}_{i}}_{relevance} + \underbrace{\boldsymbol{\omega}_{d}^{T} h_{S}(R_{i})}_{similarity}, \forall \mathbf{x}_{i} \in X \backslash S$$

- Parameters to learn: $(\boldsymbol{\omega}_r, \boldsymbol{\omega}_d)$

- Ranking: sequential document selection
 - Scoring function for position *n* depends on the documents selected for the previous *n*-1 positions

Learning the Scoring Function

- Generative approach (R-LTR) [Zhu et al., SIGIR '14]
 - Simulating the process of sequential document selection with Plackett-Luce model
 - Optimizing with MLE
- Discriminative approach (PAMM) [Xia et al., SIGIR '15]
 - Maximizing the margin between "positive" and "negative" rankings
 - Directly optimizes (any) diverse ranking measures
 - Optimizing with structured Perceptron

Experimental Results

	WT2009		WT2	2010	WT2011		
Method	ERR-IA@20	α-NDCG@20	ERR-IA@20	α-NDCG@20	ERR-IA@20	α-NDCG@20	
QL	0.164	0.269	0.198	0.302	0.352	0.453	
ListMLE	0.191	0.307	0.244	0.376	0.417	0.517	
MMR	0.202	0.308	0.274	0.404	0.428	0.530	
xQuAD	0.232	0.344	0.328	0.445	0.475	0.565	
PM-2	0.229	0.337	0.330	0.448	0.487	0.579	
SVM-DIV	0.241	0.353	0.333	0.459	0.490	0.591	
StructSVM(ERR-IA)	0.261	0.373	0.355	0.472	0.513	0.613	
StructSVM(α-NDCG)	0.260	0.377	0.352	0.476	0.512	0.617	
R-LTR	0.271	0.396	0.365	0.492	0.539	0.630	
PAMM(ERR-IA)	0.294	0.422	0.387	0.511	0.548	0.637	
PAMM(α -NDCG)	0.284	0.427	0.380	0.524	0.541	0.643	

- PAMM and R-LTR significantly outperforms the baselines, including the non-learning models and relevance learning to rank models
- PAMM can improve the performance w.r.t. a measure by directly optimizing the measure in training phase

Next Step

- MMR is not the only criterion for search result diversification
- Diversity features are hard to define
 - Relationship between one document and a set of selected documents
 - Can the model automatically learn diversity features from existing document representations?
 - Preliminary experiments showed it does work!

Outline

- Learning to rank
- Our advances
 - Improving existing algorithms
 - Adventure with new applications
- Summary

Summary

- A lot of work on learning to rank
- However, we still have a long way to go
 - Existing algorithms are not perfect
 - New ranking tasks are waiting for solutions

Acknowledgement

Yanyan Lan

Jiafeng Guo

Ph.D. students: Long Xia (ICT, CAS) Yaogong Zhang (Nankai University)

References

- Yaogong Zhang, Jun Xu, Yanyan Lan, Jiafeng Guo, Maoqiang Xie, Yalou Huang, and Xueqi Cheng. Modeling Parameter Interactions in Ranking SVM. Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM '15).
- T. Joachims, Optimizing Search Engines Using Clickthrough Data, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2002.
- I. Tsochantaridis, T. Hofmann, T. Joachims, Y. Altun. Support Vector Machine Learning for Interdependent and Structured Output Spaces. International Conference on Machine Learning (ICML), 2004.
- Jaime Carbonell and Jade Goldstein. The Use of MMR, Diversity-Based Reranking for Reordering Documents and Producing Summaries. SIGIR 1998.
- Yadong Zhu, Yanyan Lan, Jiafeng Guo, Xueqi Cheng and Shuzi Niu, Learning for Search Result Diversification. Proceedings of the 37th Annual ACM SIGIR Conference, GoldCoast, Australia, 2014. (SIGIR 2014).
- Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, and Xueqi Cheng. Learning Maximal Marginal Relevance Model via Directly Optimizing Diversity Evaluation Measures. Proceedings of the 38th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '15).

Thanks!

www.bigdatalab.ac.cn/~junxu junxu@ict.ac.cn