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Ranking in Information Retrieval
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Learning to Rank for Information Retrieval

• Machine learning algorithms for relevance ranking 
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Pointwise Learning to Rank

• Ranking  classification/regression over query-

document pairs [R. Nallapati, SIGIR ’04]
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Pairwise Learning to Rank

• Ranking  binary classification over document preference pairs 
[Joachims, KDD ’02; Freund et al., JMLR ’03; Cao et al., SIGIR ’ 06]
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Listwise Learning to Rank
• Ranking  query (document list) level ranking prediction 
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Tie-Yan Liu: WWW 2009 Tutorial

A lot of work

• Publications
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Benchmarks
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Workshops and Tutorials
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Tools
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Adopted by Commercial Search Engines

• A number of commercial search engines used 

learning to rank as their core ranking models

– LambdaMART
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Enough?

• Not yet!

• Existing algorithms are not perfect (from both 
practical and theoretical views)

– Violate machine learning assumptions (for making the 
formulation feasible)

• Few algorithms for ranking tasks other than 
relevance ranking

– Search result diversification

– Incorporating human knowledge 

– ...
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Ranking SVM [Joachims, KDD ‘02]
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𝑓 𝑞, 𝑑 = 𝐰,𝜙 𝑞, 𝑑 =  

𝑖,𝑗

𝛼𝑖𝑗 ⋅ 𝐱𝑖𝑗 , 𝜙 𝑞, 𝑑Ranking model:

Motivation: There exist significant interactions among the training pairs, e.g., (doc1, doc2) 
and (doc1, doc3) share doc1.  Whether there also exist interactions among model 
parameters? How to utilize the interactions if the answer is yes?



Low Rank Structure in Model Parameters

• A: doc-doc matrix, 𝑂 𝑁2 parameters

– Block diagonal, each block corresponds to a query



Factorized Ranking SVM [Zhang et al., CIKM ‘15]
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• Directly modeling the low rank structure 𝛼𝑖𝑗 = 𝒗𝑖 , 𝒗𝑗

• V: doc-latent matrix, 𝑂 𝐾𝑁 parameters

• K: number of latent dimensions

𝐰 =  

𝑖,𝑗

𝛼𝑖𝑗 ⋅ 𝐱𝑖𝑗 =  

𝑖,𝑗

𝐯𝑖 , 𝐯𝑗 ⋅ 𝐱𝑖𝑗



Loss Functions

• Ranking SVM loss function

• Factorized Ranking SVM loss function
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Experiments

• Based on Letor datasets

• Outperformed all baselines including Ranking SVM

• More improvements can be achieved on datasets 

with denser preference pairs (OHSUMED)
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Summary
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• There exists interactions over the training pairs 

in pairwise learning to rank

• The interactions lead to low rank structure 

among the Lagrange multipliers

• Explicitly model the low rank structure 

(Factorized Ranking SVM)

– Improve ranking accuracies 

– Reduce the number of parameters 𝑂 𝑁2 → 𝑂 𝐾𝑁



Discussion

• Parameter interactions exist in a lot of learning 

to rank algorithms

– Violate I.I.D. assumption to make formalization 

and optimization feasible

• Other Pairwise learning to rank algorithms
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Discussion

• Listwise learning to rank

– Generate “positive” and “negative” rankings as training data. The 

training instances have interactions.
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Existing Work Focuses on Relevance Ranking

• A single scoring function for all queries, documents, and ranking 

positions

• Score for one document is independent of other documents

• Scores independent of ranking positions
25



Diverse user 
interests

Reducing 
redundant

Search Result Diversification



MMR for Search Result Diversification

27

• Maximal Marginal Relevance (MMR) [Carbonell & 

Goldstein, SIGIR ‘98]

– Scoring: query-doc relevance + doc-doc similarity

– Ranking: sequential document selection
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Beyond Independent Assumption
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Learning to Rank Model for Diversification
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• Scoring function: relevance + similarity

– Parameters to learn: 𝝎𝑟 , 𝝎𝑑

• Ranking: sequential document selection

– Scoring function for position n depends on the 

documents selected for the previous n-1 positions

relevance similarity

𝑓𝑆 𝐱𝑖 , 𝑅𝑖 = 𝜔𝑟
𝑇𝐱𝑖 + 𝜔𝑑

𝑇ℎ𝑆 𝑅𝑖 , ∀𝐱𝑖 ∈ 𝑋\S



Learning the Scoring Function

• Generative approach (R-LTR) [Zhu et al., SIGIR ‘14]

– Simulating the process of sequential document selection with 

Plackett-Luce model

– Optimizing with MLE

• Discriminative approach (PAMM) [Xia et al., SIGIR ‘15]

– Maximizing the margin between “positive” and “negative” 

rankings

– Directly optimizes (any) diverse ranking measures

– Optimizing with structured Perceptron
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Experimental Results

• PAMM and R-LTR significantly outperforms the baselines, including 
the non-learning models and relevance learning to rank models

• PAMM can improve the performance w.r.t. a measure by directly 
optimizing the measure in training phase
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Method ERR-IA@20 𝛼-NDCG@20 ERR-IA@20 𝛼-NDCG@20 ERR-IA@20 𝛼-NDCG@20

QL 0.164 0.269 0.198 0.302 0.352 0.453

ListMLE 0.191 0.307 0.244 0.376 0.417 0.517

MMR 0.202 0.308 0.274 0.404 0.428 0.530

xQuAD 0.232 0.344 0.328 0.445 0.475 0.565

PM-2 0.229 0.337 0.330 0.448 0.487 0.579

SVM-DIV 0.241 0.353 0.333 0.459 0.490 0.591

StructSVM(ERR-IA) 0.261 0.373 0.355 0.472 0.513 0.613

StructSVM(𝛼-NDCG) 0.260 0.377 0.352 0.476 0.512 0.617

R-LTR 0.271 0.396 0.365 0.492 0.539 0.630

PAMM(ERR-IA) 0.294 0.422 0.387 0.511 0.548 0.637

PAMM(𝛼-NDCG) 0.284 0.427 0.380 0.524 0.541 0.643

WT2009 WT2010 WT2011



Next Step

• MMR is not the only criterion for search result 

diversification

• Diversity features are hard to define

– Relationship between one document and a set of 

selected documents

– Can the model automatically learn diversity features 

from existing document representations? 

– Preliminary experiments showed it does work!
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Summary

• A lot of work on learning to rank

• However, we still have a long way to go

– Existing algorithms are not perfect

– New ranking tasks are waiting for solutions
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