KG4IR '17 Tokyo, Japan Aug. 11, 2017

Deep Approaches to Semantic Text Matching

Jun Xu

Institute of Computing Technology, Chinese Academy of Sciences

Outline

Semantic text matching is important

- Word representation: bridging the semantic gap
- Sentence matching: capturing the proximity
- Summary

Semantic Text Matching

Accuracies of Natural Language Analysis

- Lexical Analysis (word segmentation and part-ofspeech tagging): practically usable
- Syntactic Analysis: almost usable
- Semantic Analysis: still difficult

Programmatic Analysis: ?

	English	Chinese
Prgrammatic Analysis	?	?
Semantic Role Labeling	>=87%	>=75%
Syntactic Analysis	>=90%	>=80%
Part of Speech Tagging	>=97%	>=93%
Word Segmentation	NA	>=95%

Slides from Hang Li

Current Approach: Avoid Understanding and Conduct **Matching**

Text semantic matching challenges

Word level: semantic gaps between words
 Two words has similar meanings
 "popular" ~ "famous"; "china" ~ "chinese"
 Sentence level: proximity matching between

sentences

□ The matching positions do matter

- □ "noodles and dumpling" "dumplings and noodles"
- Need to consider them simultaneously

Learning to (semantic) text match

• The problem can be formulized as $Match(T_1, T_2) = F(\phi(T_1), \phi(T_2))$

φ: mapping text to representation vector
 F: scoring function based on representation
 Learning the model parameters
 □ Learning the representation *φ* □ Learning the scoring function *F*

Outline

- Matching is important for text analysis
- Word representation: bridging the semantic gap
- Sentence matching: capturing the proximity

Summary

Local representation of words

- Words are the building blocks of texts
- NLP treats words mainly (rule-based/statistical approach at least) as atomic symbols:

also known as "one-hot" or local representation

One-H	ot Representation	man
man	[1,0,,0,0,,0,0]	1
woman	[0,1,,0,0,,0,0]	1
dog	[0,0,,1,0,,0,0]	
computer	[0,0,,0,0,,1,0]	

local representation: each word is locally represented by a distinct node.

Limitation of local representations

 Local representation makes a strong independent assumption between words

Local Representation			
man	[1,0,,0,0,,0,0]		
woman	[0,1,,0,0,,0,0]		
car	[0,0,,1,0,,0,0]		
automobile	[0,0,,0,0,,1,0]		

cos(car, automobile) = 0!cos(man, women) = cos(man, car)

man

- Local representation is not efficient
 - require N nodes to represent N words

The distributional hypothesis [Harris, 1954, Firth, 1957]

"Words that occur in the same contexts tend to have similar meanings."

-Zellig Harris [Harris, 1954]

"You shall know a word by the company it keeps."

—J.R. Firth

- Discover semantic from external information
 A word is just an ID, its meaning depends on other words (company it keeps, or context)
- One Hypothesis, two interpretations

Two interpretations: Syntagmatic and paradigmatic [Sahlgren, 2008]

- Syntagmatic: words co-occur in the same text region (they are related)
- Paradigmatic: words occur in the same context, may not at the same time (they are similar)

Modeling syntagmatic relation

LSI, LDA, PV-DBOW ···

Modeling paradigmatic relation

Albert	Einstein	was	а	physicist.
	∫ paradi	gmatic		
Richard	Feynman	was	а	physicist.

NLMs, Word2Vec, GloVe ···

Modeling them jointly

Sun et al., Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In Proc. ACL 2015.

Parallel document content model (PDC)

$$\ell = \sum_{n=1}^{N} \sum_{w_i^n \in d_n} \left(\log p(w_i^n | h_i^n) + \log p(w_i^n | d_n) \right)$$

Negative Sampling

$$\ell = \sum_{n=1}^{N} \sum_{w_i^n \in d_n} \left(\log \sigma(\vec{w_i^n} \cdot \vec{h_i^n}) + \log \sigma(\vec{w_i^n} \cdot \vec{d_n}) + k \cdot \mathbb{E}_{w' \sim P_{nw}} \log \sigma(-\vec{w'} \cdot \vec{h_i^n}) + k \cdot \mathbb{E}_{w' \sim P_{nw}} \log \sigma(-\vec{w'} \cdot \vec{d_n}) \right)$$

$$\sigma(x) = \frac{1}{1 + \exp(-x)}$$

$$\frac{PDC \qquad PV-DM}{PV-DM}$$

$$\frac{PDC \qquad PV-DM}{PV-DM}$$

$$\text{ not clear}$$

Empirical evaluation: word analogy

- Google test set [Mikolov et al., 2013]
 - □ Semantic: "Beijing is to China as Paris is to __"
 - □ Syntactic: "big is to bigger as deep is to ___"

Diversify the results

		•	-	
CBOW	SG	PDC	HDC	PV-DBOW
einstein	schwinger	geometrodynamics	schwinger	physicists
schwinger	quantum	bethe	electrodynamics	spacetime
bohm	bethe	semiclassical	bethe	geometrodynamics
bethe	einstein	schwinger	semiclassical	tachyons
relativity	semiclassical	perturbative	quantum	einstein
	Pa	radigmatic	Syntagmat	ic

Top 5 similar words to Feynman

Outline

Matching is important for text analysis

- Word representation: bridging the semantic gap
- Sentence matching: capturing the proximity

Summary

Bag of words

Bag of words representation of sentences

 the yellow cat sat on the mat
 the cat sat on the yellow mat

 Heuristic matching function

 Cosine similarity, BM25

However, order of words is important

Approach 1: composition focused

- * Step 1: Composite sentence representation $\phi(x)$
- * Step 2: Matching between the representations $F(\phi(x), \phi(y))$

Composition focused methods example: DSSM

Huang P-S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough data//Proceedings of the 22nd ACM international conference on CIKM, 2013: 2333-2338.

DSSM Input – letter-trigram

Word One-Hot Representation

Candy [00000**1**00000000000...] Store [0000000000000**1**0...]

Letter-Trigram Representation
 #candy# | #store# can split into:
 #ca | can | and | ndy | dy# | #st | sto | tor | ore | re#
 [0 0 1 0 0 ... 0 1 0 1 ... 0 0 ...]

- Compact representation: |words| (500K) -> |letter-trigrams| (30K)
- Generalize to unseen words
- Robust to misspelling, inflection, etc

DSSM - Composite Embedding

DSSM - Aggregate Matching Score

Compute Cosine similarity between semantic vectors

$$S = \frac{x^T \cdot y}{|x| \cdot |y|}$$

Training

□ A query q and a list of docs $D = \{d^+, d_1^-, ..., d_k^-\}$ □ d^+ positive doc, $d_1^-, ..., d_k^-$ negative docs to q □ Objective:

$$P(d^+|q) = \frac{\exp\left(\gamma \cos(q, d^+)\right)}{\sum_{d \in \mathbf{D}} \exp(\gamma \cos(q, d))}$$

 \Box Optimize to maximize $P(d^+|q)$. SGD Method.

Approach 2: interaction focused

- Step 1: Construct basic low-level interaction signals
- Step 2: Aggregate matching patterns

Interaction focused methods example: MatchPyramid

Challenges

Representation: representing the word level matching signals as well as the matching positions

- Modeling: discovering the matching patterns between two texts
- Our solutions

Step 1: representing as matching matrix
 Step 2: matching as image recognition

Pang et al., Text Matching as Image Recognition. In Proc. AAAI 2016.

Step 1: matching matrix

Step 2: matching as image recognition

Putting together: MatchPyramid

MatchPyramid discovers text matching patterns

T₁: PCCW's chief operating officer, Mike Butcher, and Alex Arena, the chief financial officer, will report directly to Mr So.

T₂: Current Chief Operating Officer Mike Butcher and Group Chief Financial Officer Alex Arena will report to So.

Empirical evaluation: Paraphrase Identification (MSRP)

	Model	Accuracy(%)	F1(%)
Traditional	TF-IDF	70.31	77.62
	DSSM	70.09	80.96
	CDSSM	69.80	80.42
Composition	ARC-I	69.60	80.27
Focused	uRAE	76.80	83.60
	MultiGranCNN	78.10	84.40
	MV-LSTM	75.40	82.80
Interaction Focused	ARC-II	69.90	80.91
	MatchPyramid	75.94	83.01
	Match-SRNN	74.50	81.70

Outline

- Matching is important for text analysis
- Word representation: bridging the semantic gap
- Sentence matching: capturing the proximity
- Summary

Summary

- Semantic matching in text is fundamental for QA, IR, and paraphrasing etc.
- Semantic matching is challenging
 - □ Semantic gaps between words
 - Proximity matching between sentences

Our solutions

- Semantic: distributed word representation with external (content) information
- Proximity: Composition focused and interaction focused methods, e.g., MatchPyramid

Foundations and Trends® in Information Retrieval 7:5

Semantic Matching in Search

Hang Li and Jun Xu

the essence of knowledge

now

Thank you!

junxu@ict.ac.cn http://www.bigdatalab.ac.cn/~junxu