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Discussed Traditional Approaches to  
Semantic Matching in Search
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Details Introduced  in a Monograph
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http://www.nowpublishers.com/articles/foundations-and-trends-in-information-retrieval/INR-035 
http://www.hangli-hl.com/uploads/3/1/6/8/3168008/ml_for_match-step2.pdf  



Growing Interest in “Deep” IR in the Past Three Years

❖ Success of deep learning in other fields
❖ Speech recognition, computer vision, and NLP

❖ Growing presence of deep learning in IR research
❖ SIGIR 2016 keynote, Tutorial, and Neu-IR workshop

❖ Adopted by industry
❖ ACM News: Google Turning its Lucrative Web Search Over to AI Machines (Oct. 26, 2015) 

❖ WIRED: AI is Transforming Google Search. The Rest of the Web is Next (April 2, 2016)

❖ Chris Manning (Stanford)’s SIGIR keynote:  
“I’m certain that deep learning will come to  dominate SIGIR  
over the next couple of years  … just like speech, vision,  and  
NLP before it.”
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“Deep” Semantic Matching also Gain a Lot of Attention

❖ Before 2014, a few studies, e.g., 
❖ Paraphrase detection [Socher et al., 2011]

❖ Ad-hoc retrieval  (DSSM)[Huang et al., 2013]

❖ 2014 ~ 2017, a lot of studies (as summarized in the tutorial)
❖ Paraphrase identification 

❖ Ad-hoc retrieval

❖ Question answering

❖ Dialog

❖ Result diversification  
……

6



This tutorial: 
Update the survey with newly  

developed  deep matching methods
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Outline

❖ Semantic matching in search

❖ Word-level matching: bridging the semantic gap

❖ Sentence-level matching: capturing the proximity

❖ Summary and discussion
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A Good Web Search Engine

❖ Must be good at
❖ Relevance
❖ Coverage 
❖ Diversity
❖ Freshness
❖ Response time
❖ User interface……

❖ Relevance is particularly important
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Query-Document Mismatch Challenge
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Why Query-Document Mismatch Happens?

❖ Search is still mainly based on term-level matching 
signals

❖ Some search intent can be represented by different 
queries (representations)

❖ Query document mismatch occurs, when searcher and 
author use different terms (representations) to describe 
the same concept
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Same Search Intent, Different Query Representations
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Same Search Intent, Different Query Representations
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Semantic Matching in Search
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Challenges

❖ Word-level matching: semantic gap between words
❖ Two words has similar meanings

❖ “popular” ~ “famous”; “china” ~ “chinese”

❖ Sentence-level: proximity matching between sentences
❖ The matching positions do matter

❖ “noodles and dumplings” ~ “dumplings and noodles”

❖ Need to consider them simultaneously 
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Ideally: Understanding the Natural Language 

Current Approaches: Avoid Understanding and 
Conduct Matching
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Learning to Match
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Why Deep? 
❖ Representation

❖ Word: one hot  distributed

❖ Sentence: bag-of-words —> distributed representation

❖ Better representation ability, better generalization ability

❖ Matching function
❖ Inputs (features): handcrafted —> automatically learned 
❖ Function: simple functions (e.g., cosine, dot product) —> nonlinear neural 

networks
❖ Involving richer matching signals
❖ Considering soft matching patterns
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Outline
❖ Semantic matching in search

❖ Word-level matching: bridging the semantic gap

❖ Sentence-level matching: capturing the proximity

❖ Summary and discussion
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Measure the similarity between “famous” and “popular”



From Local to Distributed Representations 
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famous

popular

china

famous

popular

china



Local Representation of Words
❖ Words are building blocks of queries/documents

❖ Conventional IR models considers words as atomic 
symbols, also known as “one-hot” or local representations
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Local(One-Hot) Representation
man [1,0,...,0,0,...,0,0]

woman [0,1,...,0,0,...,0,0]

car [0,0,...,1,0,...,0,0]

automobile [0,0,...,0,0,...,1,0]

man woman car computer

Each word is locally represented by a distinct node



Limitation of Local Representations
❖ Independent assumption

❖ Inefficient: N dimensions for N words
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Local (one-hot) representations
man [1,0,...,0,0,...,0,0]

woman [0,1,...,0,0,...,0,0]

car [0,0,...,1,0,...,0,0]

automobile [0,0,...,0,0,...,1,0]

cos(man, woman) = 0
cos(man, automobile) = 0

man woman car computer



Limitation of Local Representations (cont’)

❖ Poor generalization ability

❖ Using language modeling as 
an example
❖ Cannot generalize to unseen 

bigram “three groups”
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Doc1: There are three teams left for    
           the qualification

Doc2: Four teams have passed the  
           first round

Doc3: Four groups are playing in the  
           field

P (teams|three) > 0

P (teams|four) > 0

P (groups|four) > 0

P (groups|three) = 0



Distributed representations
man [0.326172, . . . , 0.00524902, . . . , 0.0209961]

woman [0.243164, . . . , −0.205078, . . . , −0.0294189]

car [0.0512695, . . . , −0.306641, . . . , 0.222656]

automobile [0.107422, . . . , −0.0375977, . . . , −0.0620117]

man

Hinton, G. E., et al. Distributed representations. In Rumelhart, D. E., McClelland, J. L., and PDP Research Group, C., editors, Parallel Distributed 
Processing: Explorations in the Microstructur of Cognition, Vol. 1,1986, pages 77–109. MIT Press, Cambridge, MA, USA.  

Distributional Representation of Words

❖ Each word is represented by a low-dimensional dense 
vector
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Advantages of Distributed Representations

❖ Beyond the independent assumption
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Distributed representations
man [0.326172, . . . , 0.00524902, . . . , 0.0209961]

woman [0.243164, . . . , −0.205078, . . . , −0.0294189]

car [0.0512695, . . . , −0.306641, . . . , 0.222656]

automobile [0.107422, . . . , −0.0375977, . . . , −0.0620117]

cos(man,woman) = 0.77

cos(man, automobile) = 0.25



Advantages of Distributed Representations (cont’)

❖ Efficient word representations: N dimensions can 
represent 2N words
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Advantages of Distributed Representations (cont’)

❖ Better generalization ability: semantically similar words 
are mapped to nearby points

❖ Assigning probability to  
unseen bigram “three groups”  
P(groups|three) > 0
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three

four

teams

groups

Doc1: There are three teams left for    
           the qualification

Doc2: Four teams have passed the  
           first round

Doc3: Four groups are playing in 
the  
           field

Language modeling with distributed word representations can assign 
probabilities to unseen bigrams according to their semantics 



–J. R. Firth (1957)

“You shall know a word by the company it keeps!” 
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–Zelling Harris (1954)

“Words that occur in the same context tends to 
have similar meanings.”



What is the Meaning of “badiwac”？

❖ A red alcoholic beverage made 
from grapes
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He handed her a glass of bardiwac.

Beef dishes are made to complement the 
bardiwacs. 

Nigel staggered to his feet, face flushed from 
too much bardiwac. 

Malbec, one of the lesser-known bardiwac 
grapes, responds well to Australia’s sunshine.

I dined off bread and cheese and this 
excellent bardiwac. 

The drinks were delicious: blood-red 
bardiwac as well as light, sweet Rhenish. 

From Stefan Evert. Distributional Semantic Models . 
NAACL-HLT 2010 Tutorial 



Surrounding Words 
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Just checking on the bardiwac he boomed as he come back
I hope you’ll take to a good French bardiwac chimed in Arthur Iverson jovially

our host did slip out to attend to the bardiwac that was before the shrimp

Iverson did when he went through to see to 
the

bardiwac before dinner. Henry rubbed his hands

and drinking red win from France -- sour bardiwac , which bad proved hard to sell.
eyes were alight and he was drinking the bardiwac down like water. It is like Hallow-fair

quizzically at him and offering him some more bardiwac . He shook his head. ‘I will sleep
drinks (as Queen Victoria reputedly did with bardiwac and malt whisky), but still the result
do we really ‘wash down’ a good meal with bardiwac ? Port is immediately suggested by Stilton

completely different: cheap and cheerful bardiwac . Two good examples from Victoria Wine are
examples from Victoria Wine are its house bardiwac , juicy and touch almondy, a good buy

opened a bottle of rather rust-coloured bardiwac . I ate too much and drank nearly three-quaters

elections, it was apparent the SDP of ‘ bardiwac and chips’ mould-breaking fame at the time
the black hills. Not a night of vintage bardiwac . burnley: Pearce, Measham, McGrory

SONS Old School – the Marlborian navy, bardiwac and slim-white stripe. Heavy woven silk
white-hot passion, We are like a good bottle  of bardiwac ; we both have sediment in our shoes

few minutes later he was uncorking a fine bardiwac in Masha’s room, saying he had something
the phone, Surkov silently offered me more bardiwac but I indicated a bottle of Perrier



Word-Word Co-occurrence
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bardiwac

wine

car

glass drink grape rex meal

bardiwac 10 22 43 16 29

wine 14 10 4 15 45

car 5 0 0 10 0



Two Interpretations of Distributed Hypothesis

❖ Syntagmatic: words co-occur in the same text region 

❖ Paradigmatic: words occur in the same context, may not 
at the same time
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Albert Einstein was a physicist.

Richard Feynman was a physicist.
Paradigmatic

syntagmatic

syntagmatic

Sahlgren, M. (2008). The distributional hypothesis. Italian Journal of Linguistics, 20(1):33–54.
Fei Sun et al. Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In Proceedings  of 
ACL. 2015, 136–145



Modeling the Syntagmatic Relation
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Albert Einstein was a physicist.

Richard Feynman was a physicist.

syntagmatic

syntagmatic

Word-document co-occurrence matrix 
(words represented by documents)

d1 d2

Einstein 1 0

Feynman 0 1

Physicist 1 1

Feynman

d1

d2

Einstein

Physicistsimilar

dissimilar



Modeling Syntagmatic Relation — LSI 
❖ Rank-reduced SVD of document-word co-occurrence matrix
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≈

Deerwester et al. Indexing by latent semantic analysis. Journal of the American Society for Information Science. 1990, 41(6): 391–407.

d1 d2

Einstein

Feynman

physicist
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∑
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Modeling Syntagmatic Relation — NMF 
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≈

d1 d2

Einstein

Feynman

physicist

K≃ Σ≃ Σ

∑

, =

( )( · + + − )

≃ Σ

∑

, =

( )( · + + − )
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Lee, Daniel D., and H. Sebastian Seung. "Algorithms for non-negative matrix factorization." Advances in neural information processing systems. 2001



Modeling Syntagmatic Relation — PLSA and LDA

❖ Maximum likelihood solution of PLSA is NMF with KL 
divergence
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PLSA

LDA

Eric Gaussier, and Cyril Goutte. Relation between PLSA and NMF and implications. Proceedings of the 28th Annual International 
ACM SIGIR Conference on Research and Development in Information Retrieval, Salvador, Brazil, August 15-19, 2005



Modeling Syntagmatic Relation 
— Distributed Bag of Words Version of Paragraph Vector (PV-DBOW)

wi wi+1 wi+2 wi+3

d

Predict word vector using document vector.

Quoc Leand Tomas Mikolov. Distributed Representations of Sentences and Documents. ICML 2014, 1188-1196.



Modeling the Paradigmatic Relation
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Albert Einstein was a physicist.

Richard Feynman was a physicist.
Paradigmatic

Word-word co-occurrence matrix 
(words represented by other words)

Einstein Feynman Physicist

Einstein 0 0 1

Feynman 0 0 1

Physicist 1 1 0

d1· · ·
More suitable for learning the embeddings from short documents.



Modeling the Paradigmatic Relation — Word2Vec
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❖ Usually optimized with negative sampling

ct-2

ct-1

ct+1

ct+2

wt

sum
avg

ct-2

ct-1

ct+1

ct+2

wt

P (wO|wI) =
exp(~wO · ~wI)P
w exp(~w · ~wI)



Word Embedding as Matrix Factorization

❖ Skip-gram negative sampling 
(with sampling values k > 1) 
is factorizing the shifted point 
wise mutual information 
(PMI) matrix
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Levy, M. and Goldberg, Y. Neural word embedding as implicit matrix factorization. In NIPS. 2014, 2177–2185.
ca

t

sa
t

ch
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on th
e
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on

the cat sat on the mat

Xij = ~wi · ~cj
= PMI(wi, cj)� log k



Syntagmatic v.s. Paradigmatic
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Albert Einstein was a physicist.

Richard Feynman was a physicist.
Paradigmatic

Syntagmatic

Syntagmatic

Word-document co-occurrence matrix 
(words represented by documents)

d1 d2

Einstein 1 0

Feynman 0 1

Physicist 1 1

Word-word co-occurrence matrix 
(words represented by other words)

Einstein Feynman Physicist

Einstein 0 0 1

Feynman 0 0 1

Physicist 1 1 0



Syntagmatic v.s. Paradigmatic (cont’)
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Similar words to “Feynman”
Syntagmatic Paradigmatic

quantum Einstein

physicist Schwinger

electrodynamics Bethe

relativity Bohm

Feynman

d1

d2

Einstein

Physicist

· · ·



A Natural Extension: Modeling them Jointly

❖ Construct the model under word2vec framework
❖ Paradigmatic: modeling with word2vec

❖ Syntagmatic: modeling with PV-CBOW
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Albert Einstein was a physicist.

Richard Feynman was a physicist.
Paradigmatic

syntagmatic

syntagmatic

word2vec PV-CBOW

Sun et al., Learning Word Representations by Jointly Modeling Syntagmatic and Paradigmatic Relations. In Proc. ACL 2015. 



Parallel Document Content (PDC) Model
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the

cat

on

the
sat

the cat 
sat on 

the mat

Paradigmatic

Syntagmatic



Hierarchical Document Context Model (HDC)
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the cat on the

sat

the cat 
sat on 

the mat

Paradigmatic

Syntagmatic



Empirical Evaluation of PDC and HDC
❖ Word analogy based on Google test set

❖ Semantic: “Beijing is to China as Paris is to ___”

❖ Syntactic: “big is to bigger as deep is to ___”
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More Diverse Results
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Top five similar words to “Feynman”
CBOW SG PDC HDC PV-DBOW

Einstein Schwinger geometrodynamics Schwinger physicists

Schwinger quantum Bethe electrodynamics spacetime

Bohm Bethe semiclassical Bethe geometrodynamics

Bethe Einstein Schwinger semiclassical tachyons

relativity semiclassical peturbative quantum Einstein

Paradigmatic Syntagmatic

Paradigmatic Syntagmatic



Re-examine the Distributed Hypothesis
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Albert Einstein was a physicist.

Richard Feynman was a physicist.
Paradigmatic

syntagmatic

syntagmatic

❖ Syntagmatic: words co-occur in the same text region

❖ Paradigmatic: words occur in the same context, may not at the same 
time

❖ Distributed hypothesis considers words as IDs
❖ However, words are constructed by more fine-grained elements,  

e.g., breakable —> break, able



Beyond Distributed Hypothesis
❖ Distributed hypothesis: discovering semantics of words from 

external information 

❖ Beyond distributed hypothesis: discovering semantics of words 
from both external and internal information
❖ External: distributed hypothesis

❖ Internal: words are built from morphemes,  e.g., breakable —> break, able
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glass is breakable, take care

ΩΩ He breaks the glass

Similar embeddings for “breakable” and “break” 



Word Embedding with Morphemes
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Sun et al., Inside Out: Two Jointly Predictive Models for Word Representations and Phrase Representations. In Proc. AAAI 2016. 

“… glass is breakable, take care …”

glass

is

take

care

breakable

break

able

external context internal morphemes



Continuous Bag of External and Internal Gram (BEING)
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glass

is

take

care

Pc

breakable

able

Pm

break

external context

internal morphemes



Continuous Skip External and Internal Gram (SEING)
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glass

is

take

carebreakable

able

break

context

morphemes
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Empirical Evaluation of BEING and SEING

❖ BEING and SEING outperformed CBOW and SG, respectively

❖ Significant improvements achieved on syntactic task
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Direct Matching with Word 
Embeddings
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Query-Document Matching based on Local Representations
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peace process in the Middle East

VSM score

cos

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings,  I. Vulic et. al. 2015 SIGIR.

tf-idf

One-hot embedding idf

[0  0  0  0  0  0  0  0 …. … 0  0  0  0  0  1  0] 1.2
[0  0  0  0  0  0  0  0 …. … 0  0  2  0  0  0  0] 1.3

[0  0  3  0  0  0  0  0 …. … 0  0  0  0  0  0  0] 2.5

[1  0  0  0  0  0  0  0 …. … 0  0  0  0  0  0  0] 5.2
[0  0  0  0  0  0  0  0 …. … 0  2  0  0  0  0  0] 1.3

… …

One-hot embedding idf

[0  0  0  0  0  0  0  0 …. … 0  1  0  0  0  0  0] 4.8

[0  0  0  0  0  0  0  0 …. … 0  0  0  1  0  0  0] 1.2

[0  0  0  0  0  0  1 0 …. … 0  0  0  0  0  0  0] 1.4

[0  0  0  1  0  0  0  0 …. … 0  0  0  0  0  0  0] 1.6

[0  0  0 1.6  0  1.4 0  …. 0 4.8 0 1.2 0 0] [5.2  0 2.5 0  0  0 …. 0  1.3 1.2 0  0  0 1.9]



When Embedding Comes …

56

embedding idf

[0.4  0.3  0.45  0  0.3 …. 0.09 0.24 0.7 0.01] 1.2

[0.2  0.1  0.03  0  0.1 …. 0.18 0.91 0.2 0.02] 1.3

[0.1  0.3  0.13  0  0.1 …. 0.16 0.25 0.8 0.03] 2.5

[0.3  0.5  0.11  0  0.2 …. 0.03 0.170.1  0.15] 5.2

[0.7  0.9  0.01  0  0.6 …. 0.15 0.35 0.4 0.26] 1.3

… …

peace process in the Middle East

embedding idf

[0.1  0.3  0.03  0  0.4 …. 0.05  0.12 0.02]  4.8

[0.2  0.13  0.03  0  0 ….  0.07 0.09  0.01] 1.2

[0.13  0.3  0.3  0  0.2 …. 0.08 0.87 0.02] 1.4

[0.3  0.4  0.09  0  0.3 …. 0.05 0.34 0.14] 1.6

WE-VS  score

[0.4  1.2 1.6  0.2 1.4  …. 0.7 1.2 4.8 1.5 ] [2.6 2.5 5.2 0.5 1.4 3.1 …. 0.9 0.72 1.2]

cos

Monolingual and Cross-Lingual Information Retrieval Models Based on (Bilingual) Word Embeddings,  I. Vulic et. al. 2015 SIGIR.

weighted sum



Outline
❖ Semantic matching in search

❖ Word-level matching: bridging the semantic gap

❖ Sentence-level matching: capturing the proximity

❖ Summary and discussion
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Similarity between “noodles and dumplings” 
and “dumplings and noodles”



❖ Problem 1: information on the words order is missing

❖ Bag of words: Dog Hot = Hot Dog

❖ In real world: Dog Hot     Hot Dog

hot dog dog hot=/hot dog dog hot=/

Problems with Direct Matching

58
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The Importance of Words Order
❖ Assume: 

❖ size of vocabulary = 100,000

❖ average sentences length = 20  

❖ Rough contributions of information in bits: 
❖ From the selection of words: log2(100000^20) 

❖ From the order of words: log2(20!)

❖ Conclusion: over 80% of the potential 
information in language being in the 
choice of words without regard to the 
order in which they appear

Landauer T K. On the computational basis of learning and cognition: Arguments from LSA[J]. Psychology of 

learning and motivation, 2002, 41: 43-84. 59

word information
80%

order information
20%



❖ Problem 2:  simple sentence representation

thecaton
sat

yellow

mat

Problem with Direct Methods

60

With bag-of-words assumption:

“the yellow cat sat on the mat” = “the mat sat on the yellow mat”



Problem with Direct Methods
❖ Problem 3:  Heuristic matching function

❖ A vector for representing the whole sentence 

❖ Based on distance measures between two vectors, e.g.,  
Cosine, dot product, Euclidean distance

Limited information is taken 
into consideration

61



How to design a deep model for 
semantic text matching?
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Keeping Order Information
❖ Sequence of word embeddings as the inputs

❖ Convert words to embeddings (e.g. word2vec)

❖ Concatenate embeddings to a sequence 

The cat sat on the mat

thecaton
sat

yellow

mat

Bag of Word Embeddings Sequence of Word Embeddings

63



Rich Sentence Representation
❖ Hierarchical structure of sentence representation

❖ Different levels of embeddings

❖ Involving sentence structure

Word

Short Phrase

Long Phrase

Sentence

Short Phrase
Embedding

Sentence
Embedding

64



Powerful Matching Function

❖ Considering different levels/types of matching signals

65

N-gram N-term Proximal N-term

Pang L, Lan Y, Guo J, et al. Text matching as image recognition//Proceedings of the 30th AAAI Conference onArtificial 
Intelligence. Phoenix, USA, 2016: 2793-2799.



Learning the Matching Function
❖ Data-driven approaches for determining the parameters

Python

Python

Hot Dot

Hot Dot

hard working

work hard

study

learn

Keyword
Matching Signal

N-gram
Matching Signal

N-term
Matching Signal

Semantic
Matching Signal

. . . . . .

+0.8
+1.0 +0.5 +0.1

Matching Score
Learning to composite
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Existing Deep Matching Models  
for Semantic Text Matching

67



Existing Deep Text Matching Models

❖ Composition Focused Methods [Problem 1] [Problem 2]
❖ Composite each sentence into one embedding

❖ Measure the similarity between the two embeddings

❖ Interaction Focused Methods [Problem 1] [Problem 3]
❖ Two sentences meet before their own high-level representations 

mature

❖ Capture complex matching patterns

68



Composition Focused Methods

69



Composition Focused Methods
❖ Step 1: Compositional sentence representation

❖ Step 2: Matching function

Matching	Function

Composite Sentence	Representation

Input
Compositional 

Sentence 
Representations

Matching 
Function

70

�(x)

F (�(x),�(y))



Typical Composition Focused Deep Matching Models

❖ Based on DNN
❖ DSSM: Learning Deep Structured Semantic Models for Web Search using Click-through Data 

(Huang et al., CIKM’13)

❖ Based on CNN
❖ CDSSM: A latent semantic model with convolutional-pooling structure for information retrieval 

(Shen et al. CIKM’14)

❖ ARC I: Convolutional Neural Network Architectures for Matching Natural Language Sentences 
(Hu et al., NIPS’14)

❖ CNTN: Convolutional Neural Tensor Network Architecture for Community-Based Question 
Answering (Qiu and Huang., IJCAI’15)

❖ Based on RNN
❖ LSTM-RNN: Deep Sentence Embedding Using the Long Short Term Memory Network: 

Analysis and Application to Information Retrieval (Palangi et al., TASLP’2016)
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Deep Structured Semantic Model (DSSM)

Huang P-S, He X, Gao J, et al. Learning deep structured semantic models for web search using clickthrough
data//Proceedings of  the 22nd ACM international conference on CIKM. Amazon, India, 2013: 2333-2338 

Letter-Trigram of 
Sentence

Fully Connected 
Layer

Cosine 
Similarity

72



DSSM Inputs: Letter-trigram
❖ Bag of words representation

❖ “candy store”: [ o o o 1 o o o 1 o o o … ]

❖ Letter-trigram representation
❖ “#candy# #store#” ⇒ #ca | can | and | ndy | dy# | #st | sto | tor | ore | re#

❖ [ o o 1 o o … o 1 o 1 … o o …]

❖ Advantages:

❖ Compact representation: # words: 500K ⇒ # letter-trigram: 30K

❖ Generalize to unseen words

❖ Robust to misspelling, inflection, etc.

73



DSSM Sentence Representation: DNN

Figure from He et al., CIKM ’14 tutorial
47Microsoft Research

s: “racing  car”Input word/phrase
dim = 100MBag-of-words vector

dim = 50K

d=500Letter-trigram 
embedding matrix

Letter-trigram encoding
matrix (fixed)

d=500

Semantic vector

d=300

t+: “formula one”
dim = 100M

dim = 50K

d=500

d=500

d=300

t -: “racing to me”
dim = 100M

dim = 50K

d=500

d=500

d=300

Ws,1

Ws,2

Ws,3

Ws,4

𝒗𝒔 𝒗𝒕+ 𝒗𝒕−

Initialization:
Neural networks are initialized with random weights

DSSM for semantic embedding Learning
Huang, He, Gao, Deng, Acero, Heck, “Learning 
deep structured semantic models for web 
search using clickthrough data,” CIKM, 2013

Wt,1

Wt,2

Wt,3

Wt,4

Wt,1

Wt,2

Wt,3

Wt,4

❖ Model: DNN (auto-encoder) to capture the compositional sentence 
representations
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DSSM Matching Function

❖ Cosine similarity between semantic vectors

❖ Training
❖ A query q and a list of docs

❖       positive doc,                     negative docs to query

❖ Objective:

❖ Optimizing with SGD
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DSSM: Brief Summary
❖ Inputs: sub-word units (i.e. letter-trigram) as input for 

scalability and generalizability

❖ Representations: mapping sentences to vectors (i.e. 
DNN): semantically similar sentences close to each 
other

❖ Matching: cosine similarity as the matching function

❖ Problem: bag of letter-trigrams, the order information 
of words is missing
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Capturing Order Information?
❖ Input: word sequence instead of bag of letter-trigrams

❖ Model: 
❖ Convolutional based methods can keep locally order 
❖ Recurrent based methods can keep long dependence relations 

CNN/RNNSequence of 
Embeddings

Matching 
Function77



CNN can Model the Order Information

❖ Inspired by the cat’s 
visual cortex [Hubel ’68]

❖ Convolution & max 
pooling operations on 
text

All	different	weights All	different	weights Shared	weights

Fully Connected Layer Locally Connected Layer Convolutional Layer
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Length Variability The variable length of sentences in a fairly broad range can be readily handled
with the convolution and pooling strategy. More specifically, we put all-zero padding vectors after
the last word of the sentence until the maximum length. To eliminate the boundary effect caused
by the great variability of sentence lengths, we add to the convolutional unit a gate which sets the
output vectors to all-zeros if the input is all zeros. For any given sentence input x, the output of
type-f filter for location i in the `th layer is given by

z(`,f)i
def
= z(`,f)i (x) = g(ˆz(`�1)

i ) · �(w(`,f)
ˆ

z

(`�1)
i + b(`,f)), (2)

where g(v) = 0 if all the elements in vector v equals 0, otherwise g(v) = 1. This gate, working
with max-pooling and positive activation function (e.g., Sigmoid), keeps away the artifacts from
padding in all layers. Actually it creates a natural hierarchy of all-zero padding (as illustrated in
Figure 1), consisting of nodes in the neural net that would not contribute in the forward process (as
in prediction) and backward propagation (as in learning).

2.1 Some Analysis on the Convolutional Architecture

Figure 2: The cat example, where in the convolution layer,
gray color indicates less confidence in composition.

The convolutional unit, when com-
bined with max-pooling, can act as
the compositional operator with lo-
cal selection mechanism as in the
recursive autoencoder [21]. Figure
2 gives an example on what could
happen on the first two layers with
input sentence “The cat sat on

the mat”. Just for illustration pur-
pose, we present a dramatic choice
of parameters (by turning off some
elements in W

(1)) to make the con-
volution units focus on different seg-
ments within a 3-word window. For
example, some feature maps (group
2) give compositions for “the cat”
and “cat sat”, each being a vector. Different feature maps offer a variety of compositions, with
confidence encoded in the values (color coded in output of convolution layer in Figure 2). The pool-
ing then chooses, for each composition type, between two adjacent sliding windows, e.g., between
“on the” and “the mat” for feature maps group 2 from the rightmost two sliding windows.

Relation to Recursive Models Our convolutional model differs from Recurrent Neural Network
(RNN, [15]) and Recursive Auto-Encoder (RAE, [21]) in several important ways. First, unlike
RAE, it does not take a single path of word/phrase composition determined either by a separate
gating function [21], an external parser [19], or just natural sequential order [20]. Instead, it takes
multiple choices of composition via a large feature map (encoded in w

(`,f) for different f ), and
leaves the choices to the pooling afterwards to pick the more appropriate segments(in every adjacent
two) for each composition. With any window width k` � 3, the type of composition would be much
richer than that of RAE. Second, our convolutional model can take supervised training and tune
the parameters for a specific task, a property vital to our supervised learning-to-match framework.
However, unlike recursive models [20, 21], the convolutional architecture has a fixed depth, which
bounds the level of composition it could do. For tasks like matching, this limitation can be largely
compensated with a network afterwards that can take a “global” synthesis on the learned sentence
representation.

Relation to “Shallow” Convolutional Models The proposed convolutional sentence model takes
simple architectures such as [18, 10] (essentially the same convolutional architecture as SENNA [6]),
which consists of a convolution layer and a max-pooling over the entire sentence for each feature
map. This type of models, with local convolutions and a global pooling, essentially do a “soft” local
template matching and is able to detect local features useful for a certain task. Since the sentence-
level sequential order is inevitably lost in the global pooling, the model is incapable of modeling
more complicated structures. It is not hard to see that our convolutional model degenerates to the
SENNA-type architecture if we limit the number of layers to be two and set the pooling window
infinitely large.
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RNN can Model the Order Information

❖ RNNs implement dynamical systems 

❖ RNNs can approximate arbitrary dynamical systems with arbitrary 
precision 

❖ Training: Back Propagation Through Time

❖ Two popular variations: long-short term memory (LSTM) and gated 
recurrent unit (GRU)

x ℎ #

RNN – Self Recurrent Link Expand RNN
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Using CNN: CDSSM

Shen Y, He X, Gao J, et al. A latent semantic model with convolutional-pooling structure for information 
retrieval//Proceedings of the 23rd ACM international conference on CIKM. New York, USA, 2014: 101-110.

❖ Input: encode 
each word as bag 
of letter-trigram

❖ Model: the 
convolutional 
operation in 
CNN compacts 
each sequence of 
k words
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ABSTRACT 
This paper presents a series of new latent semantic models based 
on a convolutional neural network (CNN) to learn low-
dimensional semantic vectors for search queries and Web docu-
ments. By using the convolution-max pooling operation, local 
contextual information at the word n-gram level is modeled first. 
Then, salient local features in a word sequence are combined to 
form a global feature vector. Finally, the high-level semantic in-
formation of the word sequence is extracted to form a global vec-
tor representation. The proposed models are trained on click-
through data by maximizing the conditional likelihood of clicked 
documents given a query, using stochastic gradient ascent. The 
new models are evaluated on a Web document ranking task using 
a large-scale, real-world data set. Results show that our model 
significantly outperforms other semantic models, which were 
state-of-the-art in retrieval performance prior to this work. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Information Search 
and Retrieval; I.2.6 [Artificial Intelligence]: Learning 

Keywords 
Semantic Representation, Convolutional Neural Network 

1. INTRODUCTION 
Latent semantic models, such as latent semantic analysis (LSA) 
and its extensions, are able to map a query to its relevant docu-
ments at the semantic level (e.g.,[2]). However, most latent se-
mantic models still view a query (or a document) as a bag of 
words. Therefore, they are not effective in capturing fine-grained 
contextual structures for information retrieval.  

Modeling contextual information in search queries and docu-
ments is a long-standing research topic in information retrieval 
(IR) [2][4][8]. Usually, the contextual information captured by 
models such as TF-IDF, BM25, and topic models, is often too 
coarse-grained to be effective. As an alternative, there are retriev-
al methods such as the phrase-based translation model [5] that 
directly model phrases (or word n-grams), but they often suffer 
from the data sparseness problem. In a separate line of research, 
deep learning based techniques have been proposed for semantic 
understanding[3][6][9][10]. Salakhutdinov and Hinton [9] demon-
strated that the semantic structures can be extracted via a semantic 
hashing approach using a deep auto-encoder. Most recently, a 
Deep Structured Semantic Models (DSSM) for Web search was 

proposed in [6], which is reported to outperform significantly 
semantic hashing and other conventional semantic models.  

In this study, based on a convolutional neural network [1], we 
present a new Convolutional Deep Structured Semantic Models 
(C-DSSM). Compared with DSSM, C-DSSM has a convolutional 
layer that projects each word within a context window to a local 
contextual feature vector. Semantically similar words-within-
context are projected to vectors that are close to each other in the 
contextual feature space. Further, since the overall semantic 
meaning of a sentence is often determined by a few key words in 
the sentence, thus, simply mixing all words together (e.g., by 
summing over all local feature vectors) may introduce unneces-
sary divergence and hurt the effectiveness of the overall semantic 
representation. Therefore, C-DSSM uses a max pooling layer to 
extract the most salient local features to form a fixed-length global 
feature vector. The global feature vector can be then fed to feed-
forward neural network layers, which perform affine transfor-
mations followed by non-linear functions applied element-wise 
over their inputs to extract highly non-linear and effective features.  

2. C-DSSM FOR EXTRACTING CONTEX-
TUAL FEATURES FOR IR 
The architecture of the C-DSSM, is illustrated in Figure 1. The C-
DSSM contains a word hashing layer that transforms each word 
into a letter-tri-gram input representation, a convolutional layer to 
extract local contextual features, a max-pooling layer to form a 
global feature vector, and a final semantic layer to represent the 
high-level semantic feature vector of the input word sequence.  

30k 30k 30k 30k 30k

300 300 300

max max

...

...

... max

300

...

...
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Word hashing layer: ft

Convolutional layer: ht

Max pooling layer: v

Semantic layer: y

     <s>             w1              w2           …         wT             <s>Word sequence: xt

Word hashing matrix: Wf

Convolution matrix: Wc

Max pooling operation

Affine projection matrix: Ws

... ...

 
Figure 1: Illustration of the C-DSSM. A convolutional layer 

with the window size of three is illustrated. 
In what follows, we describe each layer of the C-DSSM in de-

tail, using the annotation illustrated in Figure 1. 

Copyright is held by the author/owner(s). 
WWW’14 Companion, April 7–11, 2014, Seoul, Korea. 
ACM  978-1-4503-2745-9/14/04. 
http://dx.doi.org/10.1145/2567948.2577348 
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Using CNN: ARC-I / CNTN

Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering//Proceedings 
of the 24th (IJCAI), Buenos Aires, Argentina, 2015: 1305-1311. 

❖ Input: sequence of word embeddings
❖ Word embeddings from word2vec model train on large dataset

❖ Model: the convolutional operation in CNN compacts each 
sequence of k words

Our main contributions can be summarized as follows. First, we devise novel deep convolution-
al network architectures that can naturally combine 1) the hierarchical sentence modeling through
layer-by-layer composition and pooling, and 2) the capturing of the rich matching patterns at dif-
ferent levels of abstraction; Second, we perform extensive empirical study on tasks with different
scales and characteristics, and demonstrate the superior power of the proposed architectures over
competitor methods.

Roadmap We start by introducing a convolution network in Section 2 as the basic architecture for
sentence modeling, and how it is related to existing sentence models. Based on that, in Section 3,
we propose two architectures for sentence matching, with a detailed discussion of their relation. In
Section 4, we briefly discuss the learning of the proposed architectures. Then in Section 5, we report
our empirical study, followed by a brief discussion of related work in Section 6.

2 Convolutional Sentence Model
We start with proposing a new convolutional architecture for modeling sentences. As illustrated
in Figure 1, it takes as input the embedding of words (often trained beforehand with unsupervised
methods) in the sentence aligned sequentially, and summarize the meaning of a sentence through
layers of convolution and pooling, until reaching a fixed length vectorial representation in the final
layer. As in most convolutional models [11, 1], we use convolution units with a local “receptive
field” and shared weights, but we design a large feature map to adequately model the rich structures
in the composition of words.

Figure 1: The over all architecture of the convolutional sentence model. A box with dashed lines
indicates all-zero padding turned off by the gating function (see top of Page 3).

Convolution As shown in Figure 1, the convolution in Layer-1 operates on sliding windows of
words (width k1), and the convolutions in deeper layers are defined in a similar way. Generally,with
sentence input x, the convolution unit for feature map of type-f (among F` of them) on Layer-` is

z(`,f)i
def
= z(`,f)i (x) = �(w(`,f)

ˆ

z

(`�1)
i + b(`,f)), f = 1, 2, · · · , F` (1)

and its matrix form is z(`)i
def
= z

(`)
i (x) = �(W(`)

ˆ

z

(`�1)
i + b

(`)
), where

• z(`,f)i (x) gives the output of feature map of type-f for location i in Layer-`;

• w

(`,f) is the parameters for f on Layer-`, with matrix form W

(`) def
= [w

(`,1), · · · ,w(`,F`)
];

• �(·) is the activation function (e.g., Sigmoid or Relu [7])

• ˆ

z

(`�1)
i denotes the segment of Layer-`�1 for the convolution at location i , while

ˆ

z

(0)
i = xi:i+k1�1

def
= [x

>

i , x

>

i+1, · · · , x

>

i+k1�1]
>

concatenates the vectors for k1 (width of sliding window) words from sentence input x.
Max-Pooling We take a max-pooling in every two-unit window for every f , after each convolution

z(`,f)i = max(z(`�1,f)
2i�1 , z(`�1,f)

2i ), ` = 2, 4, · · · .

The effects of pooling are two-fold: 1) it shrinks the size of the representation by half, thus quickly
absorbs the differences in length for sentence representation, and 2) it filters out undesirable com-
position of words (see Section 2.1 for some analysis).

2

word embedding
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Baotian Hu, Zhengdong Lu, Hang Li, Qingcai Chen. Convolutional Neural Network Architectures for Matching Natural Language Sentences. Proceedings of 
Advances in Neural Information Processing Systems 27 (NIPS'14), 2042-2050, 2014.



Using RNN: LSTM-RNN

Palangi H, Deng L, Shen Y, et al. Deep sentence embedding using long short-term memory networks: Analysis and 
application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2016, 24(4): 
694-707.

❖ Input: sequence letter trigrams

❖ Model: Long-short term memory (LSTM)
❖ The last output as the sentence representation

One-hot word 
representation 

Bag of letter-trigrams 

output
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Matching Function

Heuristic: cosine, dot product
Learning: MLP, Neural tensor networks
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Matching  Functions (cont’)
❖ Given the representations of two sentences: 𝑥 and 𝑦.

❖ Similarity between these two embeddings:

❖ Cosine Similarity (DSSM, CDSSM, RNN-LSTM)

❖ Dot Product 

❖ Multi-Layer Perception   (ARC-I)
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Matching Functions (cont’)
❖  Neural Tensor Networks (CNTN）
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Qiu X, Huang X. Convolutional neural tensor network architecture for community-based question answering//Proceedings 
of the 24th (IJCAI), Buenos Aires, Argentina, 2015: 1305-1311. 



Performance Evaluation on QA Task

❖ Dataset: Yahoo! Answers
❖ 60,564 (question, answer) pairs

❖ Example:

❖ Q: How to get rid of memory stick error of my sony cyber 
shot?

❖ A: You might want to try to format the memory stick but 
what is the error message you are receiving. 
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Experimental Results

❖ Composition focused methods outperformed the baselines
❖ Semantic representation is important

❖ LSTM-RNN is the best performed method 
❖ Modeling the order information does help

Model P@1 MRR
Random Random 0.200 0.457

Traditional BM25 0.579 0.726

Comosition
Focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
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Extensions to Composition Focused  Methods
❖ Problem: sentence representations are too coarse to conduct text match

❖ Experience in IR: combining topic level and word level matching signals usually 
achieve better performancesAdding more fine-grained matching signals

❖ Solution: add fine-grained signals

Input

Compositional Sentence 
Representations

Matching 
Function

Adding Different Level 
Sentence Representations
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• MultiGranCNN: An Architecture for General Matching of Text Chunks on Multiple Levels of Granularity. (Yin W, Schütze T, Hinrich. ACL2015)
• U-RAE: Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection, (Richard Socher, Eric H. Huang, Jeffrey 

Pennington, Andrew Y. Ng, Christopher D. Manning, NIPS2011)
• MV-LSTM: A Deep Arhitecture for Semantic Matching with Multiple Positional Sentence Representations. (Shengxian Wan, Yanyan Lan, Jiafeng 

Guo, Jun Xu, and Xueqi Cheng. AAAI 2016)



Performance Evaluations on QA Task
Model P@1 MRR

Statistic Random 0.200 0.457
Traditional BM25 0.579 0.726

Comosition
Focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
uRAE 0.398 0.652

MultiGranCNN 0.725 0.840
MV-LSTM 0.766 0.869

❖ MultiGranCNN and MV-LSTM achieved the best performances

❖ Fine-grained matching signals are useful 
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Interaction Focused Methods
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Interaction Focused Methods
❖ Step 1: Construct basic low-level interaction signals

❖ Step 2: Aggregate matching patterns

Basic 
Interaction

Input AggregationCompositional 
Interaction
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Typical Interaction Focused Methods

❖ ARC II: Convolutional Neural Network Architectures 
for Matching Natural Language Sentences (Hu et al., 
NIPS’14)

❖ MatchPyramid: Text Matching as Image Recognition. 
(Pang et al. AAAI’16) 

❖ Match-SRNN: Modeling the Recursive Matching 
Structure with Spatial RNN. (Wan et al. IJCAI’16)
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ARC-II
❖ Let two sentences meet before their own high-level representations mature.

❖ Basic interaction: phrase sum interaction matrix

❖ Compositional interaction: CNN to capture the local interaction structure

❖ Aggregation Function: MLP

Figure 4: Architecture-II (ARC-II) of convolutional matching model

3.3 Some Analysis on ARC-II

Figure 5: Order preserving in 2D-pooling.

Order Preservation Both the convolution
and pooling operation in Architecture-II have
this order preserving property. Generally, z(`)i,j
contains information about the words in SX

before those in z

(`)
i+1,j , although they may be

generated with slightly different segments in
SY , due to the 2D pooling (illustrated in Fig-
ure 5). The orders is however retained in a
“conditional” sense. Our experiments show that
when ARC-II is trained on the (SX , SY , ˜SY )

triples where ˜SY randomly shuffles the word-
s in SY , it consistently gains some ability of
finding the correct SY in the usual contrastive
negative sampling setting, which however does
not happen with ARC-I.

Model Generality It is not hard to show that ARC-II actually subsumes ARC-I as a special case.
Indeed, in ARC-II if we choose (by turning off some parameters in W

(`,·)) to keep the representa-
tions of the two sentences separated until the final MLP, ARC-II can actually act fully like ARC-I,
as illustrated in Figure 6. More specifically, if we let the feature maps in the first convolution layer
to be either devoted to SX or devoted to SY (instead of taking both as in general case), the output
of each segment-pair is naturally divided into two corresponding groups. As a result, the output for
each filter f , denoted z

(1,f)
1:n,1:n (n is the number of sliding windows), will be of rank-one, possessing

essentially the same information as the result of the first convolution layer in ARC-I. Clearly the 2D
pooling that follows will reduce to 1D pooling, with this separateness preserved. If we further limit
the parameters in the second convolution units (more specifically w

(2,f)) to those for SX and SY ,
we can ensure the individual development of different levels of abstraction on each side, and fully
recover the functionality of ARC-I.

Figure 6: ARC-I as a special case of ARC-II. Better viewed in color.

5

Hu B, Lu Z, Li H, et al. Convolutional neural network architectures for matching natural language sentences//Proceedings 

of the Advances in NIPS, Montreal, Canada, 2014: 2042-2050.
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ARC-II (cont’)
❖ Order Preservation 

❖ Both the convolution and pooling have order preserving property

❖ However, the word level matching signals are lost
❖ 2-D matching matrix is construct based on the embedding of the 

words in two N-grams 

Figure 4: Architecture-II (ARC-II) of convolutional matching model

3.3 Some Analysis on ARC-II

Figure 5: Order preserving in 2D-pooling.

Order Preservation Both the convolution
and pooling operation in Architecture-II have
this order preserving property. Generally, z(`)i,j
contains information about the words in SX

before those in z

(`)
i+1,j , although they may be

generated with slightly different segments in
SY , due to the 2D pooling (illustrated in Fig-
ure 5). The orders is however retained in a
“conditional” sense. Our experiments show that
when ARC-II is trained on the (SX , SY , ˜SY )

triples where ˜SY randomly shuffles the word-
s in SY , it consistently gains some ability of
finding the correct SY in the usual contrastive
negative sampling setting, which however does
not happen with ARC-I.

Model Generality It is not hard to show that ARC-II actually subsumes ARC-I as a special case.
Indeed, in ARC-II if we choose (by turning off some parameters in W

(`,·)) to keep the representa-
tions of the two sentences separated until the final MLP, ARC-II can actually act fully like ARC-I,
as illustrated in Figure 6. More specifically, if we let the feature maps in the first convolution layer
to be either devoted to SX or devoted to SY (instead of taking both as in general case), the output
of each segment-pair is naturally divided into two corresponding groups. As a result, the output for
each filter f , denoted z

(1,f)
1:n,1:n (n is the number of sliding windows), will be of rank-one, possessing

essentially the same information as the result of the first convolution layer in ARC-I. Clearly the 2D
pooling that follows will reduce to 1D pooling, with this separateness preserved. If we further limit
the parameters in the second convolution units (more specifically w

(2,f)) to those for SX and SY ,
we can ensure the individual development of different levels of abstraction on each side, and fully
recover the functionality of ARC-I.

Figure 6: ARC-I as a special case of ARC-II. Better viewed in color.
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MatchPyramid
❖ Inspired by image recognition task

❖ Basic Interaction: word-level matching matrix

❖ Compositional interaction: hierarchical convolution

❖ Aggregation: MLP

Pang L, Lan Y, Guo J, et al. Text matching as image recognition//Proceedings of the 30th AAAI Conference on 
Artificial Intelligence. Phoenix, USA, 2016: 2793-2799. 

Word similarity 
matrix MLPCNN
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MatchPyramid: Matching Matrix
❖ Basic Interaction: word similarity matrix

❖ Strength of the word-level matching

❖ Positions of the matching occurs

(a) Indicator (b) Cosine
96
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MatchPyramid - Hierarchical Convolution
❖ Compositional interaction: CNN to capture different levels 

of matching patterns, based on word-level matching 
signals
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Matching Patterns Discovered by MathPyramid

98



Match-SRNN

Wan S, Lan Y, Guo J, et al. Match-SRNN: Modeling the recursive matching structure with spatial RNN//Proceedings 
of the 25th IJCAI, New York, US, 2016: 1022-1029. 

❖ Spatial recurrent neural network (SRNN) for text matching

❖ Basic interaction: word similarity tensor

❖ Compositional interaction: recursive matching

❖ Aggregation: MLP

Word similarity 
tensor MLPSpatial 

RNN
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Match-SRNN: Recursive Matching Structure

❖ Matching scores are calculated recursively (from top left to bottom right)

❖ We can see all matching between sub sentences have been utilized 
❖ sat <—> balls

❖ The cat <—> the dog played

❖ The cat  ←→ The dog played balls

❖ The cat sat    ←→    The dog played

The dog played balls on the floor.

The cat sat on the mat.
S1[1:2]
S1[1:3]

S2[1:3]
S2[1:4]

cat

sat

on

dog played balls on

the

the
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Match-SRNN: Recursive Matching Structure (cont’)

❖ Definition

❖         : prefix of of length i

❖         : prefix of length j 

❖     : match representation between           and

❖ We have

ℎ"# !"[1: &] !"[1: &]
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Using Spatial GRU (two dimensions)
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Connection with LCS
❖ Longest Common Sub-Sequence

❖ S1: A B C D E

❖ S2: F A C G D

❖ LCS: A C D

❖ Solving LCS with dynamic programming 

❖ Step function:

❖ Backtrace: depends on the selection of “max” operation
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Connection with LCS
❖ Matching-SRNN can be explained with LCS

❖ Simplify Match-SRNN

❖ Using exact word level matching signals only

❖ remove the reset gate r and set hidden dimensions to 1

❖ Simplified Match-SRNN simulates LCS

❖ 𝑧 is obtained by SOFTMAX 

❖ Backtrace by the value of 𝑧 in simplified Match-SRNN

Backup slides

h

i,j = z

l

· h
i,j�1

+ z

t

· h
i�1,j + z

d

· h
i�1,j�1

+ z

i

· h
0

ij

c[i , j ] = max(c[i , j � 1], c[i � 1, j ], c[i � 1, j � 1] + I
x

i

=y

j

)

1

Backup slides

h

i,j = z

l

· h
i,j�1

+ z

t

· h
i�1,j + z

d

· h
i�1,j�1

+ z

i

· h
0

ij

c[i , j ] = max(c[i , j � 1], c[i � 1, j ], c[i � 1, j � 1] + I
x

i

=y

j

)

1

104



Simulation with Simplified Math-SRNN
❖ Simulation data

❖ random sampled sequence

❖ ground truth obtained by DP 

❖ the label is the length of LCS

Match-SRNN simulates LCS!
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On Real Data
❖ Question: “How to get rid of memory stick error of my sony cyber shot?” 

❖ Answer: “You might want to try to format the memory stick but what is 
the error message you are receiving.”

memory

error
stick

memory
stick error

S1

S2
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Performance Evaluations on QA Task

❖ Interaction focused methods outperformed the composition focused ones

❖ Low level interaction (word level) signals are important

❖ Match-SRNN performs the best 

❖ Powerful recursive matching structure

Model P@1 MRR
Statistic Random 0.200 0.457

Traditional BM25 0.579 0.726

Comosition
Focused

ARC-I 0.581 0.756
CNTN 0.626 0.781

LSTM-RNN 0.690 0.822
uRAE 0.398 0.652

MultiGranCNN 0.725 0.840
MV-LSTM 0.766 0.869

Interaction
Focused

DeepMatch 0.452 0.679
ARC-II 0.591 0.765

MatchPyramid 0.764 0.867
Match-SRNN 0.790 0.882
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Application to Search —— 
Document Level Matching
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Document Level Matching: Aggregating Matching Signals
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Sentence-sentence matching Query-document matching 

deep semantic matchingquery

document



Deep Relevance Matching Model (DRMM)
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Deep Relevance Matching Model (cont’)
❖ Learning the parameters

❖ Pairwise loss: 

❖ Optimization with stochastic gradient descent

❖ Experimental results (Robust-04 collection) 
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`(q,d+,d�
) = max(0, 1� F (q,d+

) + F (q,d�
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Using topic titles Using topic descriptions
MAP nDCG@20 P@20 MAP nDCG@20 P@20

DSSM 0.095 0.201 0.171 0.078 0.169 0.145
CDSSM 0.067 0.146 0.125 0.050 0.113 0.093
ARC-I 0.041 0.066 0.065 0.030 0.047 0.045
ARC-II 0.067 0.147 0.128 0.042 0.086 0.074

MP-IND 0.169 0.319 0.281 0.067 0.142 0.118
MP-COS 0.189 0.330 0.290 0.094 0.190 0.162
MP-DOT 0.083 0.159 0.155 0.047 0.104 0.092
DRMM 0.279 0.431 0.382 0.275 0.437 0.371



DeepRank: Semantic Query-Document Matching

❖ Motivation: mimicking human-judgment of relevance 
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Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, and Xueqi Cheng. DeepRank: a New Deep Architecture for Relevance Ranking in Information 
Retrieval. Proceedings of the 26th ACM International Conference on Information and Knowledge Management (CIKM '17)
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DeepRank 
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Focusing on the location of 
query terms when scanning 

the whole document 

Determine local relevance – 
relevance between query and each 
query term -centric context, using 

MatchPyramid/MatchSRNN

Query term level aggregation

F (q,d) =
X

w2q

(EwI)T · T (w)



Learning and Empirical Evaluation
❖ Learning the parameters 

❖ Pairwise loss:

❖  Optimization: stochastic gradient decent

❖ Experimental results
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Outline

❖ Semantic matching in search

❖ Word-level matching: bridging the semantic gap

❖ Sentence-level matching: capturing the proximity

❖ Summary and discussion
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Summary
❖ Word level matching: bridging the semantic gap
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Albert Einstein was a physicist.

Richard Feynman was a physicist.

Paradigmatic

syntagmatic

syntagmatic “… glass is breakable, take care …”
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external context internal morphemes

Two interpretations of distributed hypothesis Beyond distributed hypothesis



Summary
❖ Sentence level matching: capturing the proximity
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Compositional focused methods:  
representing queries and document in  
semantic space

Interaction focused methods: discovering 
the query-document matching patterns

Semantic representation of 
sentences

Aggregating fine-grained 
matching signals



Summary
❖ Document level matching: aggregating matching signals
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Challenges
❖ Data: building benchmarks

❖ Current: lack of large scale text matching data

❖ Deep learning models has a lot of parameters

❖ Model: leveraging human knowledge
❖ Current: most models are purely data-driven

❖ Prior information (e.g., large scale knowledge base) should be helpful

❖ Application
❖ Domain specific matching models: different application have different 

matching goal, e.g., in IR, relevance != similarity
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Easy Machine Learning Github Project 
https://github.com/ICT-BDA/EasyML 

❖ Purpose: ease the process of applying machine learning algorithms to real 
tasks
❖ Machine learning tasks as data-flow DAG

❖ Interactive GUI for creating, running, and managing scalable machine learning tasks
❖ Deployed as web service http://159.226.40.104:18080/dev/ 
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https://github.com/ICT-BDA/EasyML
http://159.226.40.104:18080/dev/


Thanks!
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