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A Good Web Search Engine

* Must be good at
— Relevance
— Coverage
— Freshness
— Response time
— User interface

* Relevance is particularly important



Query Document Mismatch Challenge

Table 1.1: Examples of query document mismatch.

query document term semantic
match  match

seattle best hotel seattle best hotels partial  ves

pool schedule swimming pool schedule partial  ves
natural logarithm trans- logarithm transform partial  ves

form

china kong china hong kong partial  no

why are windows so ex- why are macs so expen- partial no

pensive

sive




Why Query Document Mismatch Happens?

e Search is still mainly based on term level
matching

* Same intent can be represented by different
queries (representations)

* Query document mismatch occurs, when
searcher and author use different terms
(representations) to describe the same concept



Same Search Intent
Different Query Representations

Table 1.2: Queries about “distance between sun and earth™

“how far” earth sun average distance from the earth to the sun
“how far” sun how far away is the sun from earth
average distance earth sun average distance from earth to sun

how far from earth to sun distance from earth to the sun

distance from sun to earth distance between earth and the sun

distance between earth & sun distance between earth and sun
how far earth is from the sun distance from the earth to the sun
distance between earth sun distance from the sun to the earth

distance of earth from sun distance tfrom the sun to earth
“how far” sun earth how far away is the sun from the earth
how far earth from sun distance between sun and earth

how far from earth is the sun how far from the earth to the sun
distance from sun to the earth 7




Same Search Intent
Different Query Representations

Table 1.3: Queries about “Youtube™

yutube

ytube

youtubo
youtube om
youtube

youtub com
youtub

you tube

you tube videos
www youtube
yotube

ww youtube com
utube videos

u tube com

u tube

outube

yuotube

youtubr

youtuber

youtube music videos
youtube com

you tube music videos
you tube com yourtube
you tub

www you tube com
www youtube com
www you tube

www utube

utube com

utub

my tube

our tube

yuo tube

yu tube
youtubecom
youtube videos
youtube co

yout tube

your tube

you tube video clips
wwww youtube com
www youtube co
www utube com
www u tube

utube

u tube videos
toutube

toutube




Sematic Matching

Semantic Matching

Form Phrase Sense Topic  Structure

Term Matching

e Reason for mismatch: language understanding
by computer is hard, if not impossible

* A more realistic approach: avoid understanding
and conduct matching



Aspects of Sematic Matching

* More aspects of the query and document can
match, more likely the query and document are
relevant

— Form: onecar—> onecare
— Phrase: “hot dog” = “hot dog”
— Sense: NY =2 New York

— Topic: Microsoft Office = Microsoft, PowerPoint,
Word, Excel...

— Structure: how far is sun from earth = distance
between sun and earth



Semantic Matching in Search
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Query Understanding

Structure Identification

Topic Identification

Similar Query Finding

Phrase Identification

Spelling Error Correction

I.I.I.I.I

michael jordan berkele

main phrase: michael jordan
Structure

topic: machine learning. berkeley

Topic
similar query: michael 1. jordan

Sense
phrase: michael jordan
phrase: berkeley Phrase

query form: michael jordan berkeley
Term

12



Document Understanding

Title Structure
Identification

Topic Identification

Key Phrase
Identification

Phrase Identification

Homepage of Michael Jordan

Michael Jordan is Professor 1n the
Department of Electrical Engineering

main phrase in title: michael jordan
Structure

topic: machine learning. berkeley
Topic

Key phrase: michael jordan. professor.
electrical engineering Kev Phrase

phrase: michael jordan. professor.
department. electrical engineering]

Phrase

13



Query Document Matching

Relevance Ranking

Query
Representation

/T

Query form: michael jordan berkeley
Similar query: michael 1 jordan
Main phrase: michael jordan
Phrase: michael jordan. berkeley
Topic : machine learning

Query Document Pl Document

Representation

/N

Document: michael jordan homepage
Main phrase in title: michael jordan
Key phrase: michael jordan, berkeley
Phrase: michael jordan. professor.,
department of electrical engineering
Topic : machine learning. berkeley

14



Semantic Matching and Semantic Search

Documents:
unstructured data
Query: unstructured data

2

W

e

Knowledge base:
structured data

Semantic Search

Qu Cry. unstruc tured data Documents:

unstiuctured data

- - 15
Semantic Matching



Matching and Ranking

* |n search, first matching and then ranking
 Matching results as features for ranking

| Matching ______ Ranking___

Prediction Matching degree Ranking a list of
between one query documents
and one document

Model f(q,d) f(q,{d4,dy, -, dn})

Challenge Mismatch Correct ranking on
the top

16



Semantic Matching in Other Tasks

task types of texts relation between
texts
search A=query, relevance

question answering

cross-language IR

short text conversation
similar document detection
online advertising

paraphrasing

textual entailment

B=document
A=question,
B=answer
A=query,
B=document
(in diff. lang.)
A=text, B=text

A=text, B=text
A=query, B=ads.
A =sentence,
B=sentence

A =sentence,
B=sentence

answer to ques-
tion

relevance

message and com-
ment

similarity
relevance as ads.
equivalence

entailment

17



Learning to Match

Ll et e e |

I
I
: I
: [ Learning
I , System
: I N
I ' o i L(r: . 0O
I | ﬂalbnnnfEF Z (F“ f(xu yl)) + (f)
LX Y ! J— —
______________ N— I
training data
m——mmmmm————m s Model f (x, y)
I
: | SN— B
I
| I
I : ~
I :
: | Matching > f(x,9)
: I System
! X Y ! y,

test data



Challenges

How to leverage relations in data and prior
knowledge

How to scale up

How to deal with tail



Approaches to Semantic Matching
Between Query and Document

Matc
Matc
Matc
Matc
Matc

ning by Query Reformulation

ning with Term Dependency Model
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n Latent Space Model



Outline of Tutorial

* Semantic Matching between Query and Document

* Approaches to Semantic Matching
1. Matching by Query Reformulation
Matching with Term Dependency Model
Matching with Translation Model

2

3

4. Matching with Topic Model

5. Matching with Latent Space Model

* Summary

21



Query Reformulation

* Transforming the original query to queries
(representations) that can better match with
documents in the sense of relevance

* Also called
— Query transformation
— Query re-writing
— Query refinement
— Query alternation



Query Transformation

« Our focus is on how queries can be
transformed to equivalent, potentially
better, queries
- Queries into paraphrases or “translations”
- Long queries into shorter queries
- Short queries into longer queries

- Queries in one domain to queries in other
domains

- Unstructured queries into structured queries

From Bruce Croft, ECIR 2009




Types of Query Reformulation

type example

spelling error correction mlss singapore — miss singapore

merging face book — facebook

splitting dataset — data set

stemming seattle best hotel — seattle best hotels

SYNOILy1 ny times — new york times

segmentation new work times square — “new york”
“times square”

query expansion wWww — www conference

query deduction natural logarithm transformation —

logarithm transformation
stopword removal\preservation the new year — “the new year” !
paraphrasing how far is sun from ecarth —

distance between sun and earth

L“The new year” is the title of an American movie, and thus the word “the” ”

should not be removed here, although it is usually treated as stopword.



Problems in Query Reformulation

* Query Reformulation
* Similar Query Mining
* Blending



Query Reformulation Problem

* Task

— Rewrite original query to (multiple) similar queries
* Challenge

— Topic drift

* Current situation

— In practice, mainly limited to spelling error
correction, query segmentation etc.



Query Reformulation is Difficult

* Depending on the contents of both query and
document

* Except
— Spelling error correction

— Definite splitting and merging: face book > facebook
— Definite segmentation: “hot dog”



Methods of Query Reformulation

* Generative approach

— Source channel model (Brill & Moore, '00; Cucerzan
& Brill, ’04; Duan & Hsu, ‘10)

* Discriminative approach
— Max entropy (Li et al., ‘06)
— Log linear model (Okazaki et al., ’08; Wang et al., ‘11)
— Conditional Random Fields (Guo et al., ‘08)



Conditional Random Field for Query
Reformulatlon (Guo et aI 08)

1

Pr(y,olz) = 7). Hd)(ya 1, Yi )P(Yi, 0i, )

Xx: observed noisy query, e.g., window onecar

y: reformulated query, e.g., windows onecare

0: a sequence of operations

Learning: P(y, o|x)

Prediction: argmax, ,P(y, 0|x) 29



Operations

Task Operation | Description
Deletion Delete a letter in the word
Spelling Insertion Insert a letter into the word
Correction |Substitution| Replace a letter in the word with
another letter
Transposition Switch two letters in the word
,H'II.DIF l Splitting | Split one word into two words
Splitting -
.‘»-"5.-' f}r.d | Merging Merge two words into one word
Merging oE -
Begin Mark a word as beginning of
phrase
Phrase Middle Mark a word as middle of phrase
Segmentation| End Mark a word as end of phrase
Out Mark a word as out of phrase
Word +s/-s Add or Remove suffix *-s’
Stemming +ed/-ed Add or Remove suflix *-ed’
+ing/-ing | Add or Remove suffix *-ing’
Acmn}jm Expansion | Expand acronym
Expansion :

30



Extended Model
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Experimental Results

Pre. Rec. F'1 Acc.
CRF-QR 54.48 | 40.75 | 46.63 | 56.27
Cascadedl | 53.38 | 39.71 | 45.54 | 55.57
Cascaded2 | 53.38 | 39.71 | 45.54 | 55.57
Cascaded3 | 53.38 | 39.71 | 45.54 | 55.57
Cascadedd4 | 53.45 | 39.76 | 45.60 | 55.60
Cascadedd | 53.45 | 39.76 | 45.60 | 55.60
Cascaded6 | 53.45 | 39.76 | 45.60 | 55.60
Generative | 30.46 | 32.95 | 31.66 | 39.10

e Data: 10,000 queries, 6,421 queries were refined by
human annotators

* Result: extended CRF-QR model significantly
outperformed the baselines



Similar Query Mining

e Task

— Given click-through data for search session data

— Find similar queries or similar query patterns
E.g., ny 2 new York; distance tween Xand Y =
how faris X from Y

* Challenge
— Dealing with noise



Mining of Similar Queries

Click-through data Search session data
ql - -~ dl
—-ql’
q2 < —d2
—gn
qm ~dn - qn’
Similar queries can be found Similar queries can be found
by co-click from users’ query reformulations

34



Methods of Similar Query Mining

Using click-through data
— Pearson correlation coefficient (Xu & Xu, ‘11)

— Agglomerative clustering (Beeferman & Burger, '00),
DBScan (Wen et al., '01), K-means (Baeza-Yates et al., ‘04),
Query stream clustering (Cao et al., '08; Liao et al., ‘12)

Using search session data

— Jacaard similarity (Huang et al., '03), likelihood ratio (Jones
et al., ‘06)

Learning of query reformulation patterns

— Mining natural language question patterns (Xue et al., ‘12)
Learning of query similarity

— Query similarity as metric learning (Xu & Xu ‘11)



Query Similarity as Metric Learning
(Xu & Xu, "11)

* Given similar query pairs and dissimilar query pairs

* Learn from head queries and propagate to tail
queries

e Objective function:

- Z -fi*('ih.)T Ma(q;)
M=0 Gapes, V#(ai)T Mp(gi) v/ H(a;)T M ()

aianes. V(@) M(a:)\/ d(g5)" M(g;)



Query Similarity as Metric Learning

* ¢(q): N-gram vector space

Query Vectors In n-gram 1-*ec-.tc}r space
(ny,new,york,times,ny times,new york,...)

NY times (L, 0, O, 1, 1, 0, .

New York times (0, 1, 1, 1. 0, 1. )

* Learned similarity function (M is positive semi-
definite)

(q:) Mo(q;)

SE'TH-((TH({{T?L @(qf)) — \/fﬁ((}i)Tﬂffrﬁ(q‘i) \/(ﬁ(@j)jﬂﬂfﬁi}({fj)

37



Query Similarity as Metric Learning

* |Interpretation: transformation between n-
gram spaces

A 'y
NY

NY Times .~ W
‘I“-.

" New York

" NY Times

____t‘*.-'-- ---'i
New York Times Times  New York Times




Experimental Results
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Blending Problem

* Steps
— Rewrite original query to multiple similar queries
— Retrieve with multiple queries
— Blend results from multiple queries

* Challenges

— System to sustain searches with multiple queries

— Blending model: matching scores are not
comparable across queries



Blending

input
query retrieved
v
documents
Michael Jordan >
similar ]
. re-ranking
queries >
v retrieved
Michael I. Jordan documents
Michael Jordan NBA >

Michael Jordan Berkeley

41



Methods of Blending

Linear combination (Xue et al., ‘08)
 earning to rank (Sheldon et al., ‘11)
Kernel methods (Wu et al., ‘11)

42



Kernel Method for Blending
(Wu et al., "11)

Given query similarity and document
similarity

“Smoothing query and document similarity”
by those of similar queries and documents

Interpretation: nearest neighbor in space of
query and document pair (double KNN)

Automatically learning the weights of
combination from click-data



Learning of Matching Model

Matching function: k(x,y) = (@x(x), @y (V)4
Input: training data S = {(x;, ¥;), ; }1<i<n
Output: matching function

Optimization

N

1

glggﬁi 1k Cxy, y,), 1) + Q)
1=



Learning of Matching Model Using
Kernel Method

* Assumption: space of matching functions is RKHS
generated by positive definite kernel k: (X X



Kernel Method

Query-document pair space

Document space

—)‘-\\

d]’

Matching
kir(q, d) _
k(g d Hilbert spac
kp(d, d

Hilbert space
kola. q)

Similarity Functions 46



Implementation: Learning of BM25

* BM25: similarity function between query and document, denoted as kg5
* Kernel:

E((q; d), (q,; d,)) = kBMZS(CI; d)kQ (CI; q’)kD (dr d’)kBMZS(q’; d’)
e Solution (called Robust BM25)

N
krem2s = kpm2s(q, d) Z aikQ (q,9)kp(d, dy)kpm2s(q;, d;)
i=1
query space document space

falg, d)

T5(g; d)

47




Experimental Results

MAP NDCG@1 NDCG@3 NDCG@5

Robust BM25 0.1192 0.2480 0.2587 0.2716

Web search Pairwise Kernel 0.1123 0.2241 02418 0.2560
Query Expansion 0.0963 0.1797 0.20061 0.2237
BM25 0.0908 0.1728 0.2019 0.2180

Robust BM25 0.3122 0.4780 0.5065 0.5295
Enterprise search | Parwise Kernel — 0.2766 0.4465 0.4769 0.4971
Query Expansion 0.2735 0.4076 0.4712 0.4958
BM25 0.2745 0.4246 0.4531 0.4741

* Robust BM25 significantly outperforms the
baselines, in terms of all measures on both
data sets
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Matching based on Term Dependency

* Matching of consecutive terms in query and
document indicates higher relevance
— “hot dog”
— “hot dog” # hot + dog

* Query: order is quite free, but not completely free

— “hot dog recipe”, “recipe hot dog”
— “hot recipe dog” x
 Term dependency: a sequence of terms

representing soft query segmentation



Factors of Term Dependency

# terms: number of terms in n-gram

— 1 term (unigram)

— Multiple terms (bigram, bi-terms ...)

Order: order of terms is free or not

— N-gram d
dered bi-term &

— Unordered N-terms aorderec e

Skip: maximum number of
terms skipped within n-gram

>

# max skips

unigram

1Yes

7
, “order
————— -©
bigram

— No skip
— S skips
Different choices of factors lead
to different types of term dependencies




Types of Term Dependency

* Term dependency in query
— Noun phrases (Bendersky & Croft, '08)

— Phrases & proximities (Bendersky & Croft, 10; Shi &
Nie, '10; Bendersky & Croft, ‘12)

* Latent term dependency

— Pseudo relevance feedback (Cao et al., '08; Metzler
& Croft ’07; Lease '08; Bendersky et al., "11)

— Query expansion (Metzler '11)



Addressing Term Mismatch based on Term
Dependency

* Explicit term dependency represents degree of
matching between query and document

— Document including “hot dog” has higher matching
degree than document including “hot” and “dog”
* Latent term dependency uses relations with
additional terms to help ‘infer’ degree of
matching

— Query “airplane” has nonzero matching score with
document including “aircraft”



Methods of Matching with Term
Dependencies

 Term dependencies using Markov Random
Fields (MRF)
— Explicit term dependencies (Metzler & Croft, '05)

— Latent term dependencies (Metzler & Croft, 2008;
Bendersky et al, "11)

— Weighted term dependencies (Bendersky et al.,
’10; Bendersky et al, '11)

 Extended IR models (Bendersky & Croft, '12;
Shi & Nie, "10)



Markov Random Fields (MRF)

* Joint probability distribution °
represented by an undirected graph
— Nodes: random variables .
— Edges: probabilistic dependencies @ o

— Cliques: subset of nodes such that every °
two nodes are connected e

e Factorization of joint probability based
on cliques

1
P(xq, -+, xn) :Zl_[ Y(c)
/\ ceclique(G)

A

normalizing potential
factor function




Modeling Term Dependencies with MRF
(Metzler & Croft, 2005)

01010 0‘:‘0 0‘0‘0
<>

independence sequential dependence full dependence

* Nodes
— Document node
— One node for each query term
* Edges
— Each query node is linked with document node
— Dependent terms are linked together



Modeling Term Dependencies with MRF

* Cliques

— Representing how query terms are matched in
document

— Matching scores determined by potential function

* Joint probability

1
P(a.d) = - 06011;[3@ exp(Zef (€))

* Matching function

F(q,d) = Z Acf(c)

ceclique(G)



Modeling Term Dependencies with MRF

* Three types of feature functions f(c¢)

— Fully independent 0
_ ololo

tflgi.d) = cf(q) ]

f1(gi.d) = log | (1 — )

] C|
S tiall dent o
— Sequentially dependen
auentially dep o o
fa(qis -+ Qi d) =log|(1— (’.[-)tf(qi- ' "'d-‘ Qitk-d) X (__F(-.f(q:é.- ‘ (T‘ s Qitk)
— Fully dependent )
eo

tf(qi - ,q5.d F(qi e
f.‘?,(q_.é_‘ ... ‘(}j‘d) — ]Og (1 . (_.'t") f((] (LT ( ) (f(q gj):|

-+ (% =
\d\ ‘( ‘



Experimental Results

fully independent | sequentially dependent | fully dependent
MAP  P@l0 MAP P@10 MAP Pa@10

AP 0.1775 0.2912 0.1867* 0.2980 0.1866™ 0.3068*
WS 0.2592  0.4327 0.2776* 0.4427 0.2738* 0.4413
WT10g [ 0.2032  0.2866 0.2167* 0.2948 0.2231* 0.3031
GOV2 10.2502  0.4837 0.2832% 0.5714%* 0.2844* (0.5837*

e Sequentially dependent and fully dependent
outperform the baseline of fully independent
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MRF Extensions

e Latent Term Dependencies(Metzler & Croft, 2007)
— Latent terms exist behind query
— E.g., collecting terms by pseudo relevance feedback

AT

 Weighted Term Dependencies (Bendersky et al., 2010)

— High weights for most discriminative term dependencies (like IDF for
unigram)

— Leveraging different data resources such as web N-gram, Wikipedia etc.
for estimating weights

(4]

IDF(q,) IDF(q,) IDF(qs3)




Extended IR Model

* IR model as asymmetric kernels (Xu et al., ‘10)
BM25-Kernel(q, d) = Z BM25-Kernel;(q. d)

o ks +1) x fi(2,q)
ks + fe(x.q)
(k14 1) x fi(x.d)

BM25-Kernel, (g, d) ZIDFT

X

b (1=b+ b)) + fi(a,d)

 Dependency language model (Gao et al., ‘04)
— Generate linkage [ according to P(l|d)
— Generate q according to P(q|l, d)

Plald) = 32 P(a.1d) = 32 PUlld) P(al. &)
[
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Outline

e Statistical Machine Translation
e Search as Translation

 Methods for Matching with Translation
Models



Statistical Machine Translation (SMT)

* Given sentence C = c;¢; - ¢; in source
language, translates it into sentence £ =
eie, -+ ey in target language

E* = arg max P( J|C)

_ . PCIE)P(E)
= dlgmdx

S B P(C)
= argmax P(C|E)P(FE)

E

translation language
model model




Typical Translation Models

 Word-based

— Translating word to word

* Phrase-based

— Translating based on phrase

e Syntax-based

— Translating based on syntactic structure
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Word-based Model: IBM Model One
(Brown et al., 1993)

* Generating target sentence
— Choose the length of target language I, according to P(I|C)
— For each position, i(i = 1,2, ...,1)
* Choose position j in source sentence C according to P(j|C)

* Generate target word e; according to P(ej|cl-)

€ I J
P(ElC) = (I-l—]_)I Hi=12j=1p(€i|Cj)




Model of Query Generation and Retrieval

S d
C\J
> Document 5 Document-query q9
; ~ translation model
information | generation model ideal document query
need fragment
Retrieval Search
retrieved Englne user’s
documents query

* Task of retrieval: find the a posteriori most
likely documents given query

P(d|q,U) = P(q|d,U)-P(d|U)

/ P(qlu)/\

query dependent query independent




Matching with Translation Model

7 el
o
PO g d atde Tak
Tw

i

WikiprpiA ‘067 matching with translation

probability P(q|d)

' .
Contents . . h t | t
e Machine transiation 2( machine translation
Current events From Wikipedia, the free encyclopedia
Randk I -
Wikinedi N

Do i \>) This article needs additional citations for verificatiol
* Inte

Help Machine translation, sometimes referred to by the abbreviation MT (not o be confused with c¢

About Wikipedia computational linguistics that investigates the use of software to translate text or speech from one

Community portal 0n a basic level, MT performs simple substitution of words in one natural language for words in &

Recent changes

closest counterparts in the target language is needed. Solving this problem with corpus and stati:

* Translating document d to query q

* Given query q and document d, translation

probability is viewed as matching score
between q and d



Addressing Term Mismatch with
Translation Model

* Translation probability P(g|w) represents
matching degree between words in query and
document

q P(q|w) q P(q|w)
titanic 0.56218 Vista 0.80575
ship 0.01383 Windows 0.05344
movie 0.01222 Download 0.00728
pictures 0.01211 ultimate 0.00571
sink 0.00697 Xp 0.00355
facts 0.00689 microsoft 0.00342
photos 0.00533 bit 0.00286
rose 0.00447 compatible 0.00270
people 0.00441 premium 0.00244
SUIrvVivors 0.00369 free 0.00211
w = titanic w = vista




Issues Need to be Addressed

* Self-translation probability P(w|w)

— Both source language and target language are in
the same language

— Too large: decrease effect of using translation

— Too small: direct matching less effective and hurt
the performance of matching



Issues Need to be Addressed

* Training data
— Synthetic data (Berger & Lafferty, '99)
— Document collection (Karimzadehgan & Zhai, '10)
— Title-body pairs of documents (Jin et al., ’02)
— Query-title pairs in click-through data (Gao et al., '10)

Query URL

msn web -~

o
.

u'ebmensseger —_— T

=, hittp://webmessenger.msn.com
(title: “msn web messenger™)

msn online ——

Windows web messanger

talking to friends on msn



Issues Need to be Addressed

* Document fields
— Use of title is better than body (Huang et al., ‘10)
— Titles and queries have similar languages
— Bodies and queries have very different languages

Perplexity(P,Q) = 2H(FQ)
=2~ YsDslogqs




Methods for Matching with Translation

* Translating document to query

— Word-based model (Berger & Lafferty, '99; Gao et al.,
‘10)

— Phrase-based model (Gao et al., "10)
— Syntax-based model (Park et al., '11)
— Topic-based model (Gao et al., "11)

— Learning translation probabilities from documents
(Karimzadehgan & Zhai, '10)

* Translating document model to query model
— Translated query language model (Jin et al., ’02)
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Methods of Matching with Translation
e Basic model (Berger & Lafferty, ’99)

m

m|d)
P(q|ld) = n +1‘ - H ZP (q;|d;)

j=11i=0

m " 1
= P(m|d) ] ( . . P(q;|d) +—1P q;|(null)) )
j=1

anL
Word q; being translated from document d. 4[\

P(qj|d) = Zwea P(ajw)Qw|d)
P(q;|w): probability of w being translated to g;
Q(w|d) : un-smoothed document language model

Smoothing to avoid
zero probability

e Adding self-translation (Gao et al., ‘10)

PI(Q;MJ\E’}“‘D +(1-5) ;P qj|w)Q(wld)

Un-smoothed document
language model




Performances of Word-based
Translation Model in Search

NDCG@1 NDCG@3 NDCG@10
BM25 (baseline) 0.3181 0.3413 0.4045
WTM (without self-translation) 0.3210 0.3512 0.4211
WTM (with self-translation) 0.3310 0.3566  0.4232

* Evaluation based on 12071 real queries
e WTM can outperform baseline of BM25
e WTM can be further improved by self-translation



Examples of Translation Probabilities

q P(q|w) q P(q|w)
titanic 0.56218 Vista 0.80575
ship 0.01383 Windows 0.05344
movie 0.01222 Download 0.00728
pictures 0.01211 ultimate 0.00571
sk 0.00697 Xp 0.00355
facts 0.00689 microsoft 0.00342
photos 0.00533 bit 0.00286
rose 0.00447 compatible 0.00270
people 0.00441 premium 0.00244
SUrvivors 0.00369 free 0.00211
w = titanic w = vista
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Outline

* Topic Models
 Methods of Matching with Topic Model



* |nput

— Document collection

Topic Modeling

wordl

word?2

word3

topicl

docl

L

| topick]

doc2

L

word-M

topic-K

* Processing
— Discover latent topics in document collection

* QOutput

— Latent topics in document collection
— Topic representations of documents

doc3

L

doc-N



Two Approaches

* Probabilistic approach

term
term
term
term
term
term

. Non-probabilistié approach

word
—>
document

word

document
toplc

toplc

88



Topic Modeling: Two Approaches
(cont’)

* Probabilistic Topic Models
— Model: probabilistic model (graphical model)

— Learning: maximum likelihood estimation
— Methods: PLSI, LDA

* Non-probabilistic Topic Models
— Model: vector space model

— Learning: matrix factorization
— Methods: LSI, NMF, RLSI

* Non-probabilistic models can be reformulated
as probabilistic models



Probabilistic Topic Model

Topic: probability distribution over words
Document: probability distribution over topics

Graphical model

— Word, topic, document, and topic distribution are
represented as nodes

— Probabilistic dependencies are represented as
directed edges

— Generation process
Interpretation: soft clustering



Probabilistic Latent Semantic Indexing
(Hofmann 1999)

document topic observed word

v v v

OO—w

1. select a document d from the collection with probability P(d)

|d|

N

2. for each document d in the collection

(a) select a latent topic z with probability P(z|d)

(b) generate a word w with probability P(w)|z)
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Latent Dirichlet Allocation
(Blei et al., 2003)

topic distribution

. observed word Dirichlet prior
given document word distribution
Dirichlet l topic l given topic
prior \’ v

O OPO~ 7 O=®

D K

-

1. for each topick=1,--- | K
(a) draw word distribution ¢y according to ¢ |3 ~ Dir(3)
2. for each document d in the collection
(a) draw topic distribution # according to #|la ~ Dir(a)

(b) for each word w in the document d

i. draw a topic z according to 2|6 ~ Mult(9)

. : . . 92
ii. draw a word w according to w|z, ¢1. ~ Mult(o, )



Non-probabilistic Topic Model

Document: vector of words
Topic: vector of words

Document representation: combination of
topic vectors

Matrix factorization
Interpretation: projection to topic space



Latent Semantic Indexing
(Deerwester et al., 1990)

* Representing document collection with co-occurrence
matrix (TF or TFIDF)

* Performing Singular Value Decomposition (SVD) and
producing k-dimensional topic space

K K

v,
Q
M/

Dy«n Uyxr XRxR vT



Nonnegative Matrix Factorization
(Lee and Seung, 2001)

— topic

x-=

document

document topic

 UandV are nonnegative
minHD — UVTH
IAY F

S. t.uij = O; vij >0
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Regularized Latent Semantic Indexing
(Wang et al., 2011)

word
word T — topic
document
document topic
* Topics are sparse
word representation topic representation

of doc n \topic matri’/ of doc n
mmZud - Uv, I3 +Alz||uk||1 + 2, Zuvnuz

toplcs are sparse 96



Probabilistic Interpretation of
Nonprobabilistic Models (RLSI)

e —)

K

mmEHd ~ Uy l3 + 4, Enukul + 25 Envnnz

* Document generated according to Gaussian distribution
P(d,|U,v,) « exp(—|ld, — Uv,||3)
* Laplacian prior
P(uy) < exp(—A4 [lugll1)
* Gaussian prior
P(vy)  exp(—2,IVnll3)




Deal with Term Mismatch with Topic Model

e Topics of query and document are identified

 Match query and document through topics, although
guery and document do not share terms

e Linear combination with term model

5(q.d) = asiopic(q, d) + (1 — @ )sterm(q. d)

Topicl Topic2 Topic3 Topic4 Topic5 Topic6  Topic7 Topic8 Topic9 Topicl0
OPEC Africa contra school Noriega firefight plane  Saturday Iran senate

oil South Sandinista student Panama ACR crash coastal Iranian Reagan
cent African rebel teacher Panamanian  forest flight  estimate Iraq billion
barrel Angola Nicaragua  education Delval park air western  hostage budget

price  apartheid Nicaraguan college canal blaze airline  Minsch Iraqi Trade




Methods of Matching Using Topic Model

* Topic matching

— Probabilistic model: PLSI (Hofmann "99), LDA (Blei
et al., ’03)

— Non-probabilistic model: LSI (Deerwester et al.,
’88), NMF (Lee & Seung ’'00), RLSI (Wang et al.,
’11), GMF (Wang et al., '12)

* Smoothing
— Clustering-based (Kurland & Lee '04, Diaz '05)
— LDA-based (Wei & Croft '06)

— PLSI-based (Yi & Allan '09)



Topic Level Matching

* Representing query and document as topic
vectors (or topic distributions)

e Calculating matching score in topic space

term space

topic space



Topic Level Matching (cont’)

* |n RLSI, query and document representation
—q-v,=(UTU+ A,I) g

—d- vy =(UTU+2,1) ' d
* Topic level matching
— Cosine similarity
(vg, V4)
|vgll2[|vall2
— Symmetric KL-divergence

51&}5‘4‘:{.‘[ q. d} —

5 | R 5
stopic(a:d) = 1= 5 (KL(vglva) + KL (vgvy)



Experimental Results

MAP NDCG@l NDCG@3 NDCG@5 NDCG@10

BM25 0.3918  0.4400 0.4268 0.4298 0.4257
BM25+LSI  0.3952  0.4720 0.4410 0.4360 0.4365
BM25+NMF 0.3985* 0.4600 0.4445%  0.4408*%  0.4347*
BM25+PLSI 0.3928  0.4680 0.4383 0.4351 0.4291
BM25+LDA 0.3952 0.4760*  0.4478*  0.4332 0.4292
BM25+RLSI 0.3998* 0.4800* 0.4461* 0.4498* 0.4420%

* Topic models can improve the baseline of BM25

 LDA, NMF, and RLSI perform slightly better than
the others
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Matching in Latent Space

Motivation

— Matching between query and document in latent space
Assumption

— Queries have similarity

— Documents have similarity

— Click-through data represent “similarity” relations between
qgueries and documents

Approach
— Projection to latent space
— Regularization or constraints

Results
— Significantly enhance accuracy of query document matching



Matching in Latent Space

Latent Space



IR Models as Similarity Functions
(Xu et al., 2010)

. unigram
unigram

q2 dn
d
ql 41 New Space
m
VSM, BM25, |
unigram 1 Mappmg functions

LM, MRF

are diagonal matrices

unigfam

unigram unigram

agm

o
-

unigram

Query Space Document Space 108



IR Models as Similarity Functions

* VSM

fusu(q. d) = (dvsu(q). dysu(d)) = (g, d).

* BM25

fBM25(qa d) — <¢BM25(Q)a Cb’BM25(d)>

(ks +1)- f(x,q)
ks + f(x,q)

¢BM25(Q);I: =
(K -

_1)f(xad

)

Opugs (d) = IDF(x) -

M(l—b

binag) +1

(, d)



Deal with Term Mismatch with Latent
Space Model

 Matching in Latent Space can solve the
problem by

— Reducing dimensionality of latent space (from
term level matching to semantic matching)

— Correlating semantically similar terms (matrices
are not diagonal)

— Automatically learning mapping functions from
data

* Generalized and Learnable of IR models



Partial Least Square (PLS)

Input

— Training data: {(q;, d;, ¢;)}1<i=ny qi € Q,d; €D, ¢; €
{+1,-1}orc; €R

Output

— Similarity function f(q, d)
Assumption

— Two linear and orthonormal transformations L, and Ly

— Dot product as similarity function f(q,d) = (Lq +q,Lg - d)
Optimization

are max = e flqg;.d;).
qu,Ld Z e.f(]e. 3.)
(qi.,d;)

LLl =1, LyLy =1



Solution of Partial Least Square

Non-convex optimization

Can prove that global optimal solution exists
Global optimal can be found by solving SVD
SVD of matrix M¢ — My = USVT



Regularized Mapping to Latent Space
(Wu et al., 13)

Input

— Training data: {(q;,d;, c;) }hi<i<n, q; € Q,d; €D, ¢; € {+1,—1}or c; €
R

Output
— Similarity function f (g, d)
Assumption
— {4 and ¥, regularization on Ly and Ly (sparse transformations)
— Dot product as similarity function f(q,d) = (Lq - q,Lg - d)
Optimization

are max — cifla:. d;).
équLd Z e.f(]e. 3.)
(qi.d;)

‘zi}‘ < 9{'{‘ “{f‘ < Qd* HZQ’H < Tq, W{f” < Td



Solution of Regularized Mapping to
Latent Space

* Coordinate Descent
* Repeat
— Fix Ly, update Ly
— Fix Ly, update Ly
* Update can be parallelized by rows



Bilingual Topic Model
(Gao et al., ‘11)

* A natural extension of LDA for generating pairs of documents

Each query document pair is generated from the same
distribution of topics

EM algorithm can be employed to estimate the parameters

S &
JORCERRIONND

N K

P(q|d) = ﬂPbltm(Cﬂd) = l AZP(CIW;)P(ZWd)

q€q q€q z




Assumption

Optimization
Method

Optimality

Efficiency
Scalability

Comparison

________Pls _______RMLS BLTM

Orthogonal

Singular Value
Decomposition

Global optimum

Low

Low

£, and ¥,
regularization

Coordinate
Descent

Local optimum

High
High

Topic
Modeling
EM

Local optimum

Low

Low
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Experimental Results

Table 7.1: Performances of latent space models in search.

NDCG@al NDCG@3 NDCG@5

BM25 (baseline) 0.637 0.690 0.690
SSI 0.538 0.621 0.629
SVDFeature 0.663 0.720 0.727
BLTM 0.657 0.702 0.701
PLS 0.676 0.728 0.736
RMLS 0.686 0.732 0.729

94,022 queries, 111,631 documents, and click through data;
RMLS and PLS work better than BM25, SSI, SVDFeature, and BLTM

RMLS works equally well as PLS, with higher learning efficiency and
scalability



Learning Semantic Embedding using the DSSM

[Huang, He, Gao, Deng, Acero, Heck, 2013]
Initialization:

Neural networks are initialized with random weights

Semanticvector ——> Vg U+ V¢~
<L
L} L}
1

Letter-trigram @ d=500

embedding matrix ——> W, ‘.‘ "‘ t

Letter-trigram enco. dim = 50K dim = 50K dim = 50K
matrix (fixed) TR W, ‘.‘ ‘.‘ A.A

Bag-of-words vector

Input word/phrase s: “racing car” t*: “formula one” t: “ford model t”

From Jianfeng Gao, CIKI\l/}82014



Learning Semantic Embedding using the DSSM

Training (Back Propagation): [Huang, He, Gao, Deng, Acero, Heck, 2013]

Compute Cosine similarity between semantic vectors -

!

A8

Compute ,  exp(cos(;,v+)) W 7 cos(vs, Vp+) cos(vs, V¢-)
gradients Xy _+ . exp(cos(vs,vy)) ‘ — 1 ¥
Semantic vector —— Vg %‘Uti—; V- é

w, § 4 .4

%] c-:00
w; § 4 4

Letter-trigram @ d=500
embedding matrix —— W, l, l, ‘
Letter-trigram enco.
matrix (fixed) =W,
Bag-of-words vector
Input word/phrase s: “racing car” t*: “formula one” t: “ford model t”

From Jianfeng Gao, CIKM 2014



Learning Semantic Embedding using the DSSM

L. [Huang, He, Gao, Deng, Acero, Heck, 2013]
After training converged:

Cosine similarity between
semantic vectors

/ ‘
i

similar apart

) 4
o5 d=500 d=500
1

w; 1 1
Letter-trigram @ d=500

embedding matrix ——> W, ‘.‘ 1‘ ‘t

Letter-trigram enco. dim = 50K dim = 50K dim = 50K

matrix (fixed) W, "‘

Bag-of-words vector

Input word/phrase “racing car” “formula one” “ford model t”

Semantic vector ———

From Jianfeng Gao, CIKM 2014



Experimental Results

Table 7.2: Performances of latent space models in search.

NDCG@l NDCG@3 NDCG@I0

BM25 (baseline) 0.308 0.373 0.455
WTM 0.332 0.400 0.478
LSI 0.298 0.372 0.455
PLSI 0.295 0.371 0.456
BLTM 0.337 0.403 0.480
DSSM (linear) 0.357 0.422 0.495
DSSM (non-linear) 0.362 0.425 0.498

* Experiments conducted with 16510 queries, and each
guery on average associated with 15 webpages

 DSSM outperformed all baselines
 DSSM (non-linear) is the best
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Outline of Tutorial

* Semantic Matching between Query and Document

* Approaches to Semantic Matching
1. Matching by Query Reformulation
Matching with Term Dependency Model
Matching with Translation Model

2

3

4. Matching with Topic Model

5. Matching with Latent Space Model

* Summary
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Summary of Tutorial

Query document matching is one of the
biggest challenge in search

Machine learning for matching between query
and document is making progress

Matching at form, phrase, sense, topic, and
structure aspects

General problem: learning to match



Matc
Matc
Matc
Matc
Matc

Approaches

ning by query reformulation

Ning wit
Ning wit
Ning wit

ning wit

n term dependency model
n translation model
n topic model

N latent space model



Characteristics of Approaches

model training data complexity of
learning
Query query search log small
Dependency query-document relevance small
Translation  query-document click-through small
Topic document document high
Latent query-document click-through high
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Open Problems

Topic drift: language is by nature synonymous
and polysemous

Scalability: e.g., topic model and latent space
model needs large scale computing environment

Missing information in training data: for rare
gueries and documents

More NLP techniques is needed: for long queries
and NLP queries

Evaluation measures: Current approaches has
limitation



fFoundations and Trends” in
Information Retrieval

7:8

Semantic Matching in Search

Hang Li and Jun Xu

http://www.nowpublishers.com/articles/foundations-and-trends-in-information-retrieval/INR-035

http://www.hangli-hl.com/uploads/3/1/6/8/3168008/ml_for _match-step2.pdf
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