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One may want to ‘twist’ relevance ranking
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Incorporating Human Knowledge 

• Designing features or ranking models 
– Indirect
– Limited to cross-query knowledge, for generalizing to 

other queries; It is difficult, costly, or even impossible 
to implement in features and models to incorporate 
some types of knowledge

– Modify both offline and online components

• Post processing of ranking
– Direct (apply on test queries directly)
– Can incorporate query/user/context dependent 

knowledge
– Only modify online component



Post Processing of Ranking
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Post Processing Knowledge (Rules)

• Query dependent
– Specific query type: if the query is a name, promote 

the corresponding personal homepage

– Specific query: if the query is “Microsoft”, promote 
http://www.microsoft.com/ to rank 1

• User dependent (personalization)
– Query: “Michael Jordan”

• For basketball fan: promote the Wikipedia entry of the 
basketball player

• For CS researcher: promote  the Wikipedia entry of the 
professor at the UC Berkeley



Post Processing Knowledge (cont’)

• Context dependent (session-based)

From Xiang et al., SIGIR’ 10



Post Processing Knowledge (cont’)
• Document (website) dependent

– Example rule: if webpage from one site is ranked at 
top, webpages from the other site will be demoted

http://www.baike.com/wiki/中科院计算技术
研究所

http://baike.baidu.com/view/730187.htm

http://www.baike.com/wiki/中科院计算技术研究所
http://baike.baidu.com/view/730187.htm


Heuristic Approaches

• Widely used in real search systems, however

– Rules may be ambiguous, e.g., the document should be 
ranked at top three positions, no specific position is decided

– Rules might be contradictory, e.g., two rules want to rank 
different documents to top 1

– Different orders of applications of rules might yield different 
ranking results. The later one has higher priority

– Hard to balance between application of rules and 
preservation of the original ranking list

– Hard to manage the old/new rules

• Difficult to formalize in a theoretically sound, effective, 
and efficient way
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Main Idea

• Traditional approaches

– Mainly based on heuristic rules

– No principled approach

• Our work

– Formalizes as a constrained optimization problem

• Constraints: post-processing rules

• Object function: tradeoff between original ranking and rules

– Implementation with Bradley-Terry model



Covered Constraints

• Top-k constraint

– A document should be at top k positions

• Not-top-k constraint

– A document cannot be at top k positions

𝑘



Related Work
• Post ranking with heuristics 

– Result diversification: re-ranking after a ranking list based on 
relevance is created [Dou et al., ‘11; Vee et al., ‘08]

– Personalized search: client side re-ranking based on user interest 
[Radlinski & Dumais, ‘ 06; Sugiyama et al., ‘04; Teevan et al., ‘05]

– Context aware ranking: demoting clicked URL in current search 
result, if it was clicked in the previous search in the same session 
[Xiang et al., ‘10]

• Probabilistic models for ranking

– Plackett-Luce model: stage-wise generative model [Luce ‘75]

– Mallows model: distance based [Mallows ‘57]

– Bradely-Terry model: pairwise comparisons [Bradley & Terry, ‘52]



Ranking Optimization with Constraints

• Constraints: rules for post ranking. 𝒞 = 𝑐𝑖 ⋅ , 𝑐𝑖: Ω𝑁 → 0, 1

• Objective function: trade-off between adherence to the original 
ranking list and satisfaction of the constraints

difference 
between 𝜎 and 𝜋

violation of 
constraints



Probabilistic Approach

• Introducing probabilistic ranking model 𝑀 and 
𝜋 = argmax𝜏𝑃(𝜏|𝑀)

min
𝑀
𝐿 𝜎,𝑀 + 𝜆 ⋅ 𝑅 𝒞,𝑀

• Define

– 𝐿 𝜎,𝑀 = − log 𝑃 𝜎|𝑀

– 𝑅 𝒞,𝑀 = − log𝑃 𝒞|𝑀

• Two steps

– Estimating 𝑀

min
𝑀
− log 𝑃 𝜎|𝑀 − 𝜆 ⋅ log 𝑃 𝒞|𝑀

– Getting optimal ranking list

𝜋∗ = argmax𝜋∈Ω𝑁𝑃 𝜋|𝑀



Using Bradley-Terry Model

• Represents distribution of permutation by making pairwise comparisons

𝑝𝑖𝑗 = 𝑃 𝑖, 𝑗 =
𝜃𝑖
𝜃𝑖+𝜃𝑗

• Probability of a permutation

𝑃 𝜎|𝑀 ∝  

𝑖,𝑗 :𝜎 𝑖 <𝜎 𝑗

𝑝𝑖𝑗 =  

𝑖,𝑗 :𝜎 𝑖 <𝜎 𝑗

𝜃𝑖
𝜃𝑖 + 𝜃𝑗

• Probability of a constraint set

𝑃 𝒞|𝑀 ∝ 

𝑐∈𝒞

 

𝑖,𝑗 ∈𝑃𝑐

𝑝𝑖𝑗 = 

𝑐∈𝒞

 

𝑖,𝑗 ∈𝑃𝑐

𝜃𝑖
𝜃𝑖 + 𝜃𝑗

𝑃𝑐: set of preference pairs derived from constraint 𝑐
top-k constraint: 𝑃𝑐 = 𝑖, 𝑗 |𝑗: 𝜎 𝑗 > 𝑘
not-top-k constraint: 𝑃𝑐 = 𝑗, 𝑖 |𝑗: 𝜎 𝑗 ≤ 𝑘



Objective Function
min
𝑀
− log 𝑃 𝜎|𝑀 − 𝜆 ⋅ log 𝑃 𝒞|𝑀

𝑃 𝜎|𝑀 ∝  𝑖,𝑗 :𝜎 𝑖 <𝜎 𝑗
𝜃𝑖

𝜃𝑖+𝜃𝑗
,

𝑃 𝒞|𝑀 ∝  𝑐∈𝒞 𝑖,𝑗 ∈𝑃𝑐
𝜃𝑖

𝜃𝑖+𝜃𝑗

𝜃𝑖 = exp 𝑠𝑖 , 𝑠𝑖 ∈ 𝑅



Optimizing with Gradient Descent

• Intuitive explanation: given a pair 𝑖, 𝑗 , 𝑖 be pushed upward 
and 𝑗 be pushed downward with identical force strengths  

Demote i Promote i



Ranking Optimization Algorithm



Experimental Settings

• Datasets

• Basic ranking model: LambdaMART
• Constraints construction

– Top-k constraint (k = 1, 3, 5):  for each query, sort documents 
according to labels and randomly select one document from top 
k positions

– Not-top-k constraint (k = 5, 10): for each query, sort documents 
according to labels and randomly select one document from the 
positions after k positions



Experimental Settings

• Baselines
– Radical

• Top-k constraint→ top one position

• Not-top-k constraint→ bottom position

– Moderate
• Top-k constraint→ middle of the top k positions

• Not-top-k constraint→ middle of the remaining list after k

– Conservative
• Top-k constraint→ the position of k

• Not-top-k constraint→ the position of k + 1.

– Proportional

• Top-k constraint→ the position of 𝑘 ×
𝑝𝑜𝑠

𝑁

• Not-top-k constraint→ the position of 𝑘 + 𝑝𝑜𝑠 1 −
𝑘

𝑁

𝑘

Top-k constraint

Not-top-k constraint



Experimental Results

MQ2008

MQ2007



Average Running Time per Query

• Tested on a Laptop PC with 2.4GHZ CPU and 
4GB memory

• For most queries, the algorithm converges 
within 10 iterations

• Ranking optimization can be performed online



Case Study 1:
How Ranking Optimization Works

• Example ranking from MQ2008

– RankOpt promoted the relevant document and demoted the 
not relevant documents

– RankOpt outperformed baselines of Moderate, Conservative, 
and Proportional, when constraints are correct

Not relevant

Partially relevant

Relevant

t Top-k constraint

n Not-top-k constraint



Case Study 2:
How Ranking Optimization Works

• Example ranking from MQ2008

– RankOpt outperformed Radical method, if constraints 
contain noise

– RankOpt made good trade-off between constraints and 
original ranking

Not relevant

Relevant

t Top-k constraint

n Not-top-k constraint



Discussion: Constraint Types 

• Top-𝑘 and not-top-𝑘 constraints individually improved 
the ranking performances

• Performances be further improved when both are used

• RankOpt can leverage multiple types of constraints
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Summary

• Post-processing of ranking is important for search

• Heuristic approaches have limitations

• Our preliminary work makes use of Bradley-Terry 
model for handling the top-k and not-top-k rules 

• Next step

– Defining and incorporating other types of constraints into 
the framework, especially the constraints on search result 
diversification
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