

WSDM 2015 workshop on Vertical Search Relevance Feb. 6, 2015 Shanghai, China

Post Processing of Ranking in Search

Jun Xu

Institute of Computing Technology, Chinese Academy of Sciences

Joint work with Fangzhao Wu, Hang Li, and Xin Jiang

Outline

- Post processing of ranking
- Ranking optimization with constraints
- Summary

One may want to 'twist' relevance ranking

372,000 条结果 时间不限 🗸

CIKM 2014 - Fudan University

cikm2014.fudan.edu.cn * 翻译此页

CIKM is a top-tier conference sponsored by ACM in the areas of Information Retrieval, Knowledge Management and Databases, bringing together leading researchers and ...

<u>CIKM</u>

www.cikm.org * 翻译此页

CIKM Tickets Details . Conference on Information and Knowledge Management (CIKM) is a top-ranked ACM conference in the areas of information retrieval, ...

<u>Conference on Information and Knowledge Management</u> (CIKM)

cikmconference.org ▼ 翻译此页

CIKM Conference on Information and Knowledge Management Sponsored by and . The Conference on Information and Knowledge Management (CIKM) provides an ...

Conference on Information and Knowledge Management ...

en.wikipedia.org/wiki/CIKM * 翻译此页

The ACM **Conference on Information and Knowledge Management (CIKM)** is an annual computer science research conference dedicated to information and ...

Article Talk Read Edit View history Search Q Conference on Information and Knowledge Management

Create account Log i

From Wikipedia, the free encyclopedia (Redirected from CIKM)

The ACM **Conference on Information and Knowledge Management** (CIKM, pronounced / sikem/) is an annual computer science research conference dedicated to information and **knowledge management**. Since the first event in 1992, the conference has evolved into one of the major forums for research on database management, information retrieval, and knowledge management.^[11] The conference is noted for its interdisciplinarity, as it brings together communities that otherwise often publish at separate venues. Recent editions have attracted well beyond 500 participants.^[11] In addition to the main research program, the conference also features a number of workshops, tutorials, and industry presentations.^[41]

For many years, the conference was held in the USA. Since 2005, venues in other countries have been selected as well. Locations include:^[6]

- 1992: Baltimore, Maryland, USA
- 1993: Washington, D.C., USA
- 1994: Gaithersburg, Maryland, USA
- 1995: Baltimore, Maryland, USA
- 1996: Rockville, Maryland, USA
- 1997: Las Vegas, Nevada, USA
- 1998: Bethesda, Maryland, USA

Main page

Featured content

Current events

Random article

Wikimedia Shop

Donate to Wikipedia

About Wikinedia

Community portal

Recent changes

What links here

Contact page

Contents

Interaction

Help

Learning Approach to Ranking

Incorporating Human Knowledge

- Designing features or ranking models
 - Indirect
 - Limited to cross-query knowledge, for generalizing to other queries; It is difficult, costly, or even impossible to implement in features and models to incorporate some types of knowledge
 - Modify both offline and online components
- Post processing of ranking
 - Direct (apply on test queries directly)
 - Can incorporate query/user/context dependent knowledge
 - Only modify online component

Post Processing of Ranking

Post Processing Knowledge (Rules)

- Query dependent
 - Specific query type: if the query is a name, promote the corresponding personal homepage
 - Specific query: if the query is "Microsoft", promote http://www.microsoft.com/ to rank 1
- User dependent (personalization)
 - Query: "Michael Jordan"
 - For basketball fan: promote the Wikipedia entry of the basketball player
 - For CS researcher: promote the Wikipedia entry of the professor at the UC Berkeley

Post Processing Knowledge (cont')

Context dependent (session-based)

Query 1: "homes for rent in atlanta"			Query 2: "houses for rent in atlanta"		
×	Atlanta homes for rent - home rentals - houses for ren Rentlist is directory of Atlanta home rentals featuring links to http://www.rentlist.net		Atlanta homes for rent - home rentals - houses for ren Rentlist is directory of Atlanta home rentals featuring links to http://www.rentlist.net		
	Homes For Rent, lease in Atlanta suburbs. Can't sell Atlanta homes for rent, homes for lease in Gwinnett and north http://atlantahomesforrent.com		Homes for Rent in Atlanta, GA Houses, Apartments and Homes for Rent in Atlanta, GA Find http://www.usrentallistings.com/ga/atlanta		
	Rentals.com - Homes for Rent, Apartments, Houses Atlanta Home Rentals; Austin Home Rentals; Charlotte Home http://www.rentals.com		Atlanta Home Rentals, Homes for Rent in Atlanta Atlanta Rentals - Homes for Rent in Atlanta, Apartments, Re http://www.rentals.com/Georgia/Atlanta		
×	Atlanta Home Rentals, Homes for Rent in Atlanta Atlanta Rentals - Homes for Rent in Atlanta, Apartments, Re http://www.rentals.com/Georgia/Atlanta		Homes For Rent, lease in Atlanta suburbs. Can't sell Atlanta homes for rent, homes for lease in Gwinnett and north http://atlantahomesforrent.com		
	Homes for Rent in Atlanta, GA Houses, Apartments and Homes for Rent in Atlanta, GA Find http://www.usrentallistings.com/ga/atlanta	×	Atlanta Homes for Rent, Rental Properties, Houses for Search for Homes for Rent in Atlanta, Georgia for free. View li www.rentalhouses.com/find/GA/AtlantaArea/ATLANTA		

From Xiang et al., SIGIR' 10

Post Processing Knowledge (cont')

- Document (website) dependent
 - Example rule: if webpage from one site is ranked at top, webpages from the other site will be demoted

💉 编辑 🏢 🛄 讨论 🏢 🛃 分享 👻 📋 🤷 1832
中科院计算技术研究所 🔜 💆 🏧
中国科学院计算技术研究所(简称计算所)创建于1956年,是中国第一个专门从事计算机科学技术综合性研究的学 术机构。计算所研制成功了我国第一台通用数字电子计算机,并形成了我国高性能计算机的研发基地,我国首校通 用CPU芯片也诞生在这里。 编辑摘要
1 简介 2 所长致辞 3 现任领导 4 发展战略 5 大事记
中科院计算技术研究所 - 简介 🖌
●14月14月44453 第1444453 第1444553 第1444553 第1445553 第1455553 第1455555 第1455555 第14555555 第14555555 第14555555 第1455555 第1455555 第14555555 第14555555 第14555555 第14555555 第14555555 第145555555 第145555555 第14555555 第145555555 第145555555 第145555555 第1455555555 第145555555 第14555555555 第1455555555555555555555555555 第14555555555555555555555555555555555555

研究所

中国科学	院计算技术研究所(Institut	e of Computing Technology, (Chinese Academy of Sci	ence,简称ICT)创建于1956年,
琴于北京海淀	区,中关村南路科学院六号	号。是中国第一个专门从事计算	机科学技术综合性研究的	9学术机构。计算所研制成功了
国第一台通用	数字电子计算机,并形成了	了中国高性能计算机的研发基地	1,中国首枚通用CPU芯;	计也诞生在这里。
目录	 所況简介 现任领导 孙凝輝 李锦涛 隋雪青 陈熙霄 张光辉 学术委员会 研究实体 	 计算机系统研究部 网络科学与技术研究部 雪骺值息处理研究部 雪骺值息处理研究部 5 管理部门 综合处 人力资源处 科研处 技术发展处 研次生部 财务资产处 	6 支撑部门 • 科研支撑中心 • 期刊编辑部 • 图书馆 7 计算所分部 • 上海分部 • 上海分部 • 加分部 • 烟台分所 8 光辉历程	9 科研概况 10 成果介绍 11 科技奖励 12 质量认证 13 研究生教育

Heuristic Approaches

- Widely used in real search systems, however
 - Rules may be ambiguous, e.g., the document should be ranked at top three positions, no specific position is decided
 - Rules might be contradictory, e.g., two rules want to rank different documents to top 1
 - Different orders of applications of rules might yield different ranking results. The later one has higher priority
 - Hard to balance between application of rules and preservation of the original ranking list
 - Hard to manage the old/new rules
- Difficult to formalize in a theoretically sound, effective, and efficient way

Outline

- Motivation of post processing of ranking
- Ranking optimization with constraints (Wu et al., CIKM 2014)
- Conclusion

Main Idea

- Traditional approaches
 - Mainly based on heuristic rules
 - No principled approach
- Our work
 - Formalizes as a constrained optimization problem
 - Constraints: post-processing rules
 - Object function: tradeoff between original ranking and rules
 - Implementation with Bradley-Terry model

Covered Constraints

k

• Top-k constraint

A document should be at top k positions

Not-top-k constraint

A document cannot be at top k positions

Related Work

- Post ranking with heuristics
 - Result diversification: re-ranking after a ranking list based on relevance is created [Dou et al., '11; Vee et al., '08]
 - Personalized search: client side re-ranking based on user interest
 [Radlinski & Dumais, '06; Sugiyama et al., '04; Teevan et al., '05]
 - Context aware ranking: demoting clicked URL in current search result, if it was clicked in the previous search in the same session [Xiang et al., '10]
- Probabilistic models for ranking
 - Plackett-Luce model: stage-wise generative model [Luce '75]
 - Mallows model: distance based [Mallows '57]
 - Bradely-Terry model: pairwise comparisons [Bradley & Terry, '52]

Ranking Optimization with Constraints

- **Constraints:** rules for post ranking. $C = \{c_i(\cdot)\}, c_i: \Omega_N \to \{0, 1\}$
- **Objective function:** trade-off between adherence to the *original ranking list* and satisfaction of the *constraints*

Probabilistic Approach

- Introducing probabilistic ranking model M and $\pi = \operatorname{argmax}_{\tau} P(\tau | M)$ $\min_{M} L(\sigma, M) + \lambda \cdot R(\mathcal{C}, M)$
- Define

$$- L(\sigma, M) = -\log P(\sigma|M)$$

- $R(\mathcal{C}, M) = -\log P(\mathcal{C}|M)$
- Two steps
 - Estimating M

$$\min_{M} - \log P(\sigma|M) - \lambda \cdot \log P(\mathcal{C}|M)$$

- Getting optimal ranking list

$$\pi^* = \operatorname{argmax}_{\pi \in \Omega_N} P(\pi | M)$$

Using Bradley-Terry Model

• Represents distribution of permutation by making pairwise comparisons

$$p_{ij} = P\{(i,j)\} = \frac{\theta_i}{\theta_i + \theta_j}$$

• Probability of a permutation

$$P(\sigma|M) \propto \prod_{(i,j):\sigma(i) < \sigma(j)} p_{ij} = \prod_{(i,j):\sigma(i) < \sigma(j)} \frac{\theta_i}{\theta_i + \theta_j}$$

• Probability of a constraint set

$$P(\mathcal{C}|M) \propto \prod_{c \in \mathcal{C}} \prod_{(i,j) \in P^c} p_{ij} = \prod_{c \in \mathcal{C}} \prod_{(i,j) \in P^c} \frac{\theta_i}{\theta_i + \theta_j}$$

 P^c : set of preference pairs derived from constraint ctop-k constraint: $P^c = \{(i, j) | j : \sigma(j) > k\}$ not-top-k constraint: $P^c = \{(j, i) | j : \sigma(j) \le k\}$

$$\begin{split} \textbf{Objective Function} \\ \min_{M} - \log P(\sigma|M) - \lambda \cdot \log P(\mathcal{C}|M) \\ P(\sigma|M) & \propto \prod_{(i,j):\sigma(i) < \sigma(j)} \frac{\theta_i}{\theta_i + \theta_j'} \\ P(\mathcal{C}|M) & \propto \prod_{c \in \mathcal{C}} \prod_{(i,j) \in \mathcal{P}^c} \frac{\theta_i}{\theta_i + \theta_j} \\ \min_{\Theta} f(\Theta) &= -\sum_{(i,j):\sigma(i) < \sigma(j)} \frac{\theta_i}{\theta_i + \theta_j} - \sum_{c \in \mathcal{C}} \left(\rho^c \sum_{(i,j) \in \mathcal{P}^c} \log \frac{\theta_i}{\theta_i + \theta_j} \right) \\ \text{subject to } \forall i : \theta_i > 0, \sum_{i=1}^N \theta_i = 1, \\ \theta_i &= \exp\{s_i\}, s_i \in R \\ \min_{(i,j):\sigma(i) < \sigma(j)} (\log(e^{s_i} + e^{s_j}) - s_i) + \sum_{c \in \mathcal{C}} \left(\rho^c \cdot \sum_{(i,j) \in \mathcal{P}^c} (\log(e^{s_i} + e^{s_j}) - s_i) \right) \end{split}$$

THEOREM 4.1. f(S) is a convex function.

Optimizing with Gradient Descent

 Intuitive explanation: given a pair (i, j), i be pushed upward and j be pushed downward with identical force strengths

Ranking Optimization Algorithm

Algorithm 1 Ranking Optimization Algorithm

Require: Initial ranking σ , constraints \mathcal{C} , and shrinkage rate $0 < \alpha < 1$ 1: $\mathcal{S}^{(0)} \leftarrow$ random values 2: $t \leftarrow 1$ 3: repeat 4: $\nabla S = \frac{\partial f}{\partial S} \Big|_{S=S^{(t-1)}}$ {Equation (6)} 5: $\gamma \leftarrow 1$ {search optimal step size using backtracking} while $f(\mathcal{S}^{(t-1)} - \gamma \nabla \mathcal{S}) > f(\mathcal{S}^{(t-1)}) - \frac{\gamma}{2} \| \nabla \mathcal{S} \|^2$ do 6: 7: $\gamma \leftarrow \alpha \gamma$ 8: end while $\mathcal{S}^{(t)} \leftarrow \mathcal{S}^{(t-1)} - \gamma \nabla \mathcal{S} \{ \text{Equation } (7) \}$ Q٠ 10: $t \leftarrow t + 1$ 11: **until** convergence 12: return $\Theta = \left\{\frac{e^{s_1}}{Z}, \cdots, \frac{e^{s_N}}{Z}\right\}$, where $Z = \sum_{n=1}^N e^{s_n}$

THEOREM 4.2. Algorithm 1 converges in finite steps and the convergence rate is $O(\frac{1}{\epsilon})$, where $\epsilon > 0$ is the tolerance.

Experimental Settings

• Datasets

Table 1: Statistics of datasets.					
dataset	# queries	#documents	#relevance levels		
MQ2007	1692	69623	3		
MQ2008	784	15211	3		
OHSUMED	106	16140	3		
.Gov	50	49058	2		
Enterprise	183	5464	3		

- Basic ranking model: LambdaMART
- Constraints construction
 - Top-k constraint (k = 1, 3, 5): for each query, sort documents according to labels and randomly select one document from top k positions
 - Not-top-k constraint (k = 5, 10): for each query, sort documents according to labels and randomly select one document from the positions after k positions

Experimental Settings

- Baselines
 - Radical

Not-top-k constraint

Top-k constraint

- Top-k constraint \rightarrow top one position
- Not-top-k constraint \rightarrow bottom position

– Moderate

- Top-k constraint \rightarrow middle of the top k positions
- Not-top-k constraint \rightarrow middle of the remaining list after k

– Conservative

- Top-k constraint \rightarrow the position of k
- Not-top-k constraint \rightarrow the position of k + 1.

– Proportional

- Top-k constraint \rightarrow the position of $\left[k \times \frac{pos}{N}\right]$
- Not-top-k constraint \rightarrow the position of $\left| k + pos\left(1 \frac{k}{N}\right) \right|$

Experimental Results

(a) top-3, not-top-5, $\rho^t = 100$, $\rho^n = 10$

(c) top-5, not-top-10, $\rho^t{=}100,\,\rho^n{=}10$

MQ2007

(b) top-3, not-top-10, $\rho^t = 100$, $\rho^n = 10$

0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.55 0.45 0.45 0.45 0.55 0.45

(b) top-3, not-top-10, $\rho^t{=}10,\,\rho^n{=}10$

(c) top-5, not-top-10, $\rho^t = 10$, $\rho^n = 10$

MQ2008

Average Running Time per Query

Table	e 2: Ave	erage time	(in milliseco	onds) of	f ranking		
optimization in setting of (top-5, not-top-10).							
	MQ2008	MQ2007	OHSUMED	.Gov	Enterprise		
time	4.24	6.85	134.53	70.06	6.45		

- Tested on a Laptop PC with 2.4GHZ CPU and 4GB memory
- For most queries, the algorithm converges within 10 iterations
- Ranking optimization can be performed online

Case Study 1: How Ranking Optimization Works

• Example ranking from MQ2008

- RankOpt promoted the relevant document and demoted the not relevant documents
- RankOpt outperformed baselines of Moderate, Conservative, and Proportional, when constraints are correct

Case Study 2: How Ranking Optimization Works

• Example ranking from MQ2008

- RankOpt outperformed Radical method, if constraints contain noise
- RankOpt made good trade-off between constraints and original ranking

Discussion: Constraint Types

- Top-k and not-top-k constraints individually improved the ranking performances
- Performances be further improved when both are used
- RankOpt can leverage multiple types of constraints

Outline

- Motivation of post processing of ranking
- Ranking optimization with constraints
- Summary

Summary

- Post-processing of ranking is important for search
- Heuristic approaches have limitations
- Our preliminary work makes use of Bradley-Terry model for handling the top-k and not-top-k rules
- Next step
 - Defining and incorporating other types of constraints into the framework, especially the constraints on search result diversification

References

- R. A. Bradley and M. E. Terry. The rank analysis of incomplete block designs I. The method of paired comparisons. *Biometrika*, 39:324–345, 1952.
- J. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering documents and producing summaries. SIGIR '98, pages 335–336, 1998.
- Z. Dou, S. Hu, K. Chen, R. Song, and J.-R. Wen. Multi-dimensional search result diversification. WSDM '11, pages 475–484, 2011.
- F. Radlinski and S. Dumais. Improving personalized web search using result diversification. SIGIR '06, pages 691–692, 2006.
- F. Radlinski and S. Dumais. Improving personalized web search using result diversification. SIGIR '06, pages 691–692, 2006.
- J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing search via automated analysis of interests and activities. SIGIR '05, pages 449–456, 2005.
- E. Vee, U. Srivastava, J. Shanmugasundaram, P. Bhat, and S. Yahia. Efficient computation of diverse query results. ICDE '08, pages 228–236, 2008.
- F. Wu, J. Xu, H. Li, and X. Jiang. Ranking optimization with constraints. CIKM '14, 2014.
- B. Xiang, D. Jiang, J. Pei, X. Sun, E. Chen, H. Li, Context-Aware Ranking in Web Search. SIGIR'10, pages 451-458, 2010.

Thank you!