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One may want to ‘twist’ relevance ranking
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Learning Approach to Ranking

Human labels
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Incorporating Human Knowledge

* Designing features or ranking models
— Indirect

— Limited to cross-query knowledge, for generalizing to
other queries; It is difficult, costly, or even impossible
to implement in features and models to incorporate
some types of knowledge

— Modify both offline and online components

* Post processing of ranking
— Direct (apply on test queries directly)

— Can incorporate query/user/context dependent
knowledge

— Only modify online component



Post Processing of Ranking

Human labels
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Post Processing Knowledge (Rules)

* Query dependent

— Specific query type: if the query is a name, promote
the corresponding personal homepage

— Specific query: if the query is “Microsoft”, promote
http://www.microsoft.com/ to rank 1

e User dependent (personalization)

— Query: “Michael Jordan”

* For basketball fan: promote the Wikipedia entry of the
basketball player

* For CS researcher: promote the Wikipedia entry of the
professor at the UC Berkeley



Post Processing Knowledge (cont’)

* Context dependent (session-based)

Query 1: “homes for rent in atlanta”

Query 2: “houses for rent in atlanta”

Atlanta homes for rent - home rentals - houses for ren...
Rentlist is directory of Atlanta home rentals featuring links to...
hitp://www. rentlist. net

Atlanta homes for rent - home rentals - houses for ren...
Rentlist is directory of Atlanta home rentals featuring links to...
hitp: //www. rentlist. net

Homes For Rent, lease 1in Atlanta suburbs. Can’t sell ...

Atlanta homes for rent, homes for lease in Gwinnett and north...

hitp://atlantahomesforrent.com

Homes for Rent in Atlanta, GA
Houses, Apartments and Homes for Rent in Atlanta, GA Find ...
hitp: //www. usrentallistings. com /qga/atlanta

Rentals.com - Homes for Rent, Apartments, Houses ...

Atlanta Home Rentals; Austin Home Rentals; Charlotte Home...

http: //www. rentals. com

Atlanta Home Rentals, Homes for Rent in Atlanta ...
Atlanta Hentals - Homes for Rent in Atlanta, Apartments, Re...
htip: //www.rentals. com/Georgia/Atlanta

Atlanta Home Rentals, Homes for Rent in Atlanta ...
Atlanta Rentals - Homes for Rent in Atlanta, Apartments, Re...
http: / /www.rentals.com/Georgia/Atlanta

Homes For Hent, lease in Atlanta suburbs. Can’t sell ...
Atlanta homes for rent, homes for lease in Gwinnett and north...
http: / /atlantahomesforrent. com

A0es [Or et 11 ATIAaliEa, A

Houses, Apartments and Homes for Rent in Atlanta, GA Find ...

htip: //www. usrentallistings. com/ga/atlanta

Atlanta Homes for Rent, Rental Properties, Houses for ...
Search for Homes for Rent in Atlanta, Georgia for free. View ...
www.rentalhouses.com/find/GA /AtlantaArea/ATLANTA

From Xiang et al., SIGIR’ 10




Post Processing Knowledge (cont’)

Document (website) dependent

— Example rule: if webpage from one site is ranked at
top, webpages from the other site will be demoted
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Heuristic Approaches

* Widely used in real search systems, however

— Rules may be ambiguous, e.g., the document should be
ranked at top three positions, no specific position is decided

— Rules might be contradictory, e.g., two rules want to rank
different documents to top 1

— Different orders of applications of rules might yield different
ranking results. The later one has higher priority

— Hard to balance between application of rules and
preservation of the original ranking list

— Hard to manage the old/new rules

» Difficult to formalize in a theoretically sound, effective,
and efficient way



Outline

* Motivation of post processing of ranking

* Ranking optimization with constraints
(Wu et al., CIKM 2014)

 Conclusion



Main Idea

* Traditional approaches
— Mainly based on heuristic rules
— No principled approach

e Qur work

— Formalizes as a constrained optimization problem
* Constraints: post-processing rules
* Object function: tradeoff between original ranking and rules

— Implementation with Bradley-Terry model



Covered Constraints

* Top-k constraint

— A document should be at top k positions

* Not-top-k constraint “ —

— A document cannot be at top k positions

[




Related Work

e Post ranking with heuristics

— Result diversification: re-ranking after a ranking list based on
relevance is created [Dou et al., ‘11; Vee et al., ‘08]

— Personalized search: client side re-ranking based on user interest
[Radlinski & Dumais, ‘ 06; Sugiyama et al., ‘04; Teevan et al., ‘05]

— Context aware ranking: demoting clicked URL in current search
result, if it was clicked in the previous search in the same session
[Xiang et al., “10]

* Probabilistic models for ranking

— Plackett-Luce model: stage-wise generative model [Luce 75]

— Mallows model: distance based [Mallows ‘57]

— Bradely-Terry model: pairwise comparisons [Bradley & Terry, ‘52]



Ranking Optimization with Constraints

min L(o,7)+ X+ R(C, )

?TEQN

violation of
constraints

difference

between g and T

 Constraints: rules for post ranking. C = {c;(*)}, ¢;: Oy — {0, 1}

* Objective function: trade-off between adherence to the original
ranking list and satisfaction of the constraints



Probabilistic Approach

* Introducing probabilistic ranking model M and
m = argmax,P(t|M)
mzvizn L(c,M)+ A-R(C,M)

* Define
— L(o,M) = —logP(c|M)
— R(C,M) = —logP(C|M)
* Two steps
— Estimating M
mzvizn —log P(c|M) — A -log P(C|M)
— Getting optimal ranking list
m* = argmaxpegq, P(7|M)



Using Bradley-Terry Model

* Represents distribution of permutation by making pairwise comparisons
.. 0
Pij = P{(l;])} = 9i+l9j
* Probability of a permutation

P(o|M) l_[ Dij =

(i,7):0()<a(j) (i,7):0()<0(j)
* Probability of a constraint set

ren[ [ [T r=]] ] 5759

ceC (i,j)ePc¢ ceC (i,j)epPc€

P¢: set of preference pairs derived from constraint ¢
top-k constraint: P¢ = {(i,j)|j: 0(j) > k}
not-top-k constraint: P¢ = {(j,i)|j: 0 (j) < k}



Objective Function

m1vi1n —log P(o|M) — A -log P(C|M)
0i

P(UlM) X H(i,j):a(i)<a(j) 9i+9j’

0,
P(CIM) « [lcee Il jyepe 0,+6;

111111 f(e) = —Z log —Z ( ZIDD 1 )

|:i J): ﬂ’[i;{ﬂ'ij; celC (i,7)EPE

subject toVi :6; > D,Zt?g- —1.

i=1

' 0; = exp{s;},s; €ER

H}Sill f(S) = Z (log(e™ 4+ €™7) — s4) +Z (;OC ' Z (log(e™ +€™7) — 5%))

(4,5):0(1)<o () ceC (i,)ePC

THEOREM 4.1. f(S) is a convexr function.




Optimizing with Gradient Descent
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* Intuitive explanation: given a pair (i, j), i be pushed upward
and j be pushed downward with identical force strengths
F=-=>» <—

] /




Ranking Optimization Algorithm

Algorithm 1 Ranking Optimization Algorithm

Require: Initial ranking o, constraints C. and shrinkage
rate 0 < a < 1
0
1: 8 + random values

20t 1
3: repeat

8 - . .
4. VS = a—é s_gt—1) 1EEquation (6)}
D: Vo 1

{search optimal step size using backtracking}

6:  while f(S"™Y —4VS) > f(S"V)— 2| VS |® do
T: Y {— C vy
&: end while

9: SO L st _~ys {Equation (7)}
10 t+t+1
11: until convergence

9. o — [e’l e’ N ‘her I
12: return © = {%~,.-- , "~} where Z ="' | e

THEOREM 4.2. Algorithm 1 converges in finite steps and
the convergence rate is O(%)* where € > 0 s the tolerance.




Experimental Settings

* Datasets
Table 1: Statistics of datasets.
dataset # queries #documents Frelevance levels
MQ2007 1692 69623 3
MQ2008 784 15211 3
OHSUMED 106 16140 3
Gov 50 49058 2
Enterprise 183 5464 3

e Basic ranking model: LambdaMART

e Constraints construction

— Top-k constraint (k =1, 3, 5): for each query, sort documents
according to labels and randomly select one document from top
k positions

— Not-top-k constraint (k = 5, 10): for each query, sort documents

according to labels and randomly select one document from the
positions after k positions



Experimental Settings

Top-k constraint
* Baselines
_ Radical . Not-top-k constraint
* Top-k constraint — top one position
* Not-top-k constraint » bottom position k —---- I —
— Moderate
* Top-k constraint - middle of the top k positions .
* Not-top-k constraint = middle of the remaining list after k
— Conservative

* Top-k constraint = the position of k
* Not-top-k constraint = the position of k + 1.

— Proportional

pos
N

* Top-k constraint — the position of [k X

k
* Not-top-k constraint — the position of [k + pos (1 o Nﬂ



Experimental Results
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Average Running Time per Query

Table 2: Average time (in milliseconds) of ranking

optimization in setting of (top-5, not-top-10).
MQ2008 MQ2007 OHSUMED .Gov Enterprise

time 4.24 6.85 134.53 70.06 6.45

* Tested on a Laptop PC with 2.4GHZ CPU and
4GB memory

* For most queries, the algorithm converges
within 10 iterations

* Ranking optimization can be performed online



Case Study 1:
How Ranking Optimization Works

 Example ranking from MQ2008

LambdaMART n n Not relevant
RankOpt n n Partially relevant
Radical n n
. Relevant
Moderate n
Conservative n Top-k constraint
Proportional n

n | Not-top-k constraint

— RankOpt promoted the relevant document and demoted the
not relevant documents

— RankOpt outperformed baselines of Moderate, Conservative,
and Proportional, when constraints are correct



Case Study 2:
How Ranking Optimization Works

 Example ranking from MQ2008

LambdaMART ... n 1 Not relevant
rankopt [ [ IR t n . Relevant
Radical ... n
Moderate .. . - Top-k constraint
Cmmdm... ; = n | Not-top-k constraint
Proportional . . . { n

RankOpt outperformed Radical method, if constraints
contain noise

RankOpt made good trade-off between constraints and
original ranking



Discussion: Constraint Types
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* Top-k and not-top-k constraints individually improved
the ranking performances

* Performances be further improved when both are used
 RankOpt can leverage multiple types of constraints
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Summary

Post-processing of ranking is important for search
Heuristic approaches have limitations

Our preliminary work makes use of Bradley-Terry
model for handling the top-k and not-top-k rules

Next step

— Defining and incorporating other types of constraints into
the framework, especially the constraints on search result
diversification
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