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Outline of Tutorial 

1. Learning for Matching between Query and 
Document (Hang)  

2. Matching by Query Reformulation (Hang) 

3. Matching with Dependency Model (Jun) 

4. Matching with Translation Model (Jun) 

5. Matching with Topic Model (Jun) 

6. Matching in Latent Space (Hang) 

7. Generalization: Learning to Match (Hang) 

8. Summary and Open Problems (Hang) 
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1. Learning for Matching 
between Query and Document 
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Outline of Section 1 

• Query Document Matching in Search 
– Mismatch: Biggest Challenge in Search 
– Matching at Different Levels 
– Matching in Different Ways 

• Learning for Matching between Query and Document 
• Discussions 

– Relation between Ranking and Matching 
– Previous Work 
– Semantic Matching 
– Long Tail Challenge 
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A Good Web Search Engine 

• Must be good at 

– Relevance 

– Freshness 

– Comprehensiveness 

– User interface 

• Relevance is particularly important 
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Query Document Mismatch is 
Biggest Challenge in Web Search 
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Same Search Intent Different Query Representations 
Example = “Distance between Sun and Earth” 

• distance from earth 
to the sun 

• distance from sun to 
earth 

• distance from sun to 
the earth 

• distance from the 
earth to the sun 

• distance from the 
sun to earth 

• distance from the 
sun to the earth 

• distance of earth 
from sun 

• distance between 
earth sun 

 

• "how far" earth sun 

• "how far" sun 

• "how far" sun earth 

• average distance earth 
sun 

• average distance from 
earth to sun 

• average distance from 
the earth to the sun 

• distance between earth 
& sun 

• distance between earth 
and sun 

• distance between earth 
and the sun 

• how far away is the 
sun from earth 

• how far away is the 
sun from the earth 

• how far earth from 
sun 

• how far earth is from 
the sun 

• how far from earth is 
the sun 

• how far from earth 
to sun 

• how far from the 
earth to the sun 

• distance between 
sun and earth 
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Same Search Intent, Different Query Representations  
Example = “Youtube” 

• yutube                       yuotube                                 yuo tube 
• ytube                         youtubr                                  yu tube 
• youtubo                    youtuber                                youtubecom  
• youtube om        youtube music videos          youtube videos 
• youtube                    youtube com                     youtube co 
• youtub com              you tube music videos         yout tube 
• youtub        you tube com yourtube       your tube 
• you tube                   you tub                      you tube video clips 
• you tube videos        www you tube com              wwww youtube com 
• www youtube        www youtube com    www youtube co  
• yotube                       www you tube                      www utube com 
• ww youtube com     www utube                     www u tube 
• utube videos             utube com                     utube 
• u tube com         utub                                       u tube videos 
• u tube                         my tube                      toutube 
• outube                        our tube                                toutube 
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Query Document Mismatch 

• Same intent can be represented by different 
queries (representations) 

• Search is still mainly based on term level 
matching 

• Query document mismatch occurs, when 
searcher and author use different 
representations 
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Examples of Query Document Mismatch 

Query Document Term 
Matching 

Semantic 
Matching 

seattle best hotel  seattle best 
hotels 

no yes 

pool schedule swimmingpool 
schedule 

no yes 

natural logarithm 
transformation  

logarithm 
transformation 

partial yes 

china kong  china hong kong partial no 

why are windows so 
expensive  

why are macs so 
expensive 

partial no 
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Matching between Two Worlds: 
In Principle, Language Understanding Is Needed 

Intent Content 



Matching at Different Levels 

Match between terms in query  & document 

NY NY youtube youtube 

Match between word senses in query & document 

NY New York utube youtube 

Match between topics of query & document 

Microsoft Office … Microsoft … PowerPoint, Word, Excel… 

Match between structures of query & document title 

how far is sun from earth  
… distance between sun 
and earth  
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hot dog hot dog 

Match between phrases in query & document 



Query Understanding 
Structure 

Identification 

Topic Identification 

Similar Query Finding 

Phrase Identification 

Spelling Error 
Correction 

Sense 

michael jordan berkele 

michael jordan berkeley 

[michael  jordan] berkeley 

michael jordan 

michael I. jordan 

michael  jordan:  main phrase 
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Phrase 

Term 

Structure 

Topic 

michael  jordan berkely:  machine 
learning 



Document Understanding 

Title Structure 
Identification 

Topic Identification 

Key Phrase 
Identification 

Phrase 
Identification Term 

Topic 

Homepage of Michael Jordan 
 
Michael Jordan is Professor in the  
Department of Electrical Engineering 

[Michael Jordan], [Professor] 
[Electrical Engineering]: keyphrase 

Phrase 

15 

Michael Jordan is Professor in the  
Department of Electrical Engineering: machine learning 

Michael Jordan: main phrase in Title 

[Michael Jordan] is [Professor] in the  
[Department] of [Electrical Engineering] Phrase 

Structure 



Online Matching 

Query 
Representation 

Document 
Representation 

Semantic 
Matching 

Matching can be conducted at different levels 

Ranking Result 
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Matching in Different Ways 

17 

q d 

q’ 

d’ 

c 

Query Reformulation 

Document transformation 

Query and document transformation 

No transformation 



Machine Learning for Query 
Document Matching in Web Search 
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Learning for Matching between Query 
and Document 

• Learning matching function  

 

 

• Using training data  

•                     and                         can be id’s or 
feature vectors 

•                   can be binary or numerical values 

• Using relations in data and/or prior 
knowledge 
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Matching Problem: Instance Matching 

q1 

qm 

d1 

dn 

d2 

d3 
q2 

q3 
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Matching Problem: Instance Matching 

1 

4 

5 1 

1 

q1 

qm 

d1 dn d2 d3 

q2 

q3 
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Matching Problem: Content Matching 

Query space 

q1 

q5 

d3 

d2 

Document space 
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Matching Problem: Content Matching 

1 

4 

5 1 

1 

q1 

qm 

d1 dn d2 d3 

q2 

q3 
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Challenges in Machine Learning for 
Matching 

• How to leverage relations in data and prior 
knowledge 

• Scale is very large 
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Relation between Matching and Ranking 

• In traditional IR:   
– Ranking = matching 

 
 
• Web search:   

– Ranking and matching become separated 
– Learning to rank becomes state-of-the-art 

 
 

– Matching = feature learning for ranking 
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Matching vs Ranking 

Matching Ranking 

Prediction Matching 
degree 
between query 
and document 

Ranking list of 
documents 

Model f(q, d) f(q,d1), f(q,d2), … 
f(q,dn) 

Challenge Mismatch Correct ranking on 
top 
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In search, first matching and then ranking 



Matching Functions as Features in 
Learning to Rank 

• Term level matching: 

• Phrase level matching: 

• Sense level matching: 

• Topic level matching: 

• Structure level matching: 

• Term level matching (spelling, stemming):     
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Linear Combinations of Matching Functions 

• Query Reformulation 

 

• Topic Model 
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Previous Work 

• Studied in long history of IR 

• Query expansion, pseudo relevance feedback 

• Latent Semantic Indexing, Probabilistic Latent 
Semantic Indexing 

• … …  

29 



New Trends in Recent Work 

• Employing more machine learning (supervised 
and unsupervised) 

• Large scale 

• Use of log data 

 

• This tutorial focuses on recent work! 
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 Previous Work v.s. Recent Work 

Previous Recent 

Scale Small Large 

Methodologies Unsupervised 
learning 

Both supervised 
learning and 
unsupervised 
learning 

Data No use of log 
data 

Use of log data 
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Semantic Matching 

• Matching based on “semantics”, i.e., topics, 
sense, structure 

• Beyond traditional term matching 

• Ultimate goal: language understanding 
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Long Tail Challenge 

• Head pages have rich anchor texts and click data 

• Tail queries and pages suffer more from 
mismatch 

• Problem of propagating information and 
knowledge from head to tail 
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Approaches to Learning for Matching 
Between Query and Document 

• Matching by Query Reformulation 

• Matching with Dependency Model 

• Matching with Translation Model 

• Matching with Topic Model 

• Matching in Latent Space 

 

34 



2. Matching by Query 
Reformulation 
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Outline of Section 2 

• Query Reformulation 

• Problems in Query Reformulation 
– Query Reformulation 

– Blending 

– Similar Query Mining 

• Methods of Query Reformulation 

• Methods of Blending 

• Methods of Similar Query Mining 

• QRU-1 Dataset 
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Query Reformulation Is Also Called 

• Query Transformation 

• Query Rewriting 

• Query Refinement 

• Query Alteration 

 

 

• Terminology regarding to Query Representation 
and Understanding (Croft et al., ’10)  
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From Bruce Croft, ECIR  2009 



Types of Query Reformulation 

• Spelling Error Correction 
– 10-15% queries contain spelling errors 

– E.g., “mlss singapore”  “miss singapore”  × 
              mlss=machine learning summer school 

• Merging 
– E.g., “face book”  “facebook” 

• Splitting 
– E.g.,  “dataset”  “data set” 

• Query Segmentation 
– E.g.,  “new york time square”  “(new york) (time 

square)”  
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Types of Query Reformulation (2) 

• Stemming 
– E.g,  “seattle best hotel”  “seattle best hotels” 

• Synonym 
– E.g,   “ny times”   “new york times” 

• Paraphrasing 
– E.g.,  “how far is sun from earth”  “distance between 

sun and earth” 

• Query Expansion 
– E.g., “www”   “www conference” 

• Query Deduction 
– E.g., “natural logarithm transformation”  “logarithm 

transformation” 
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Problems in Query Reformulation 

• Query Reformulation 

• Blending 

• Similar Query Mining 
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Query Reformulation Problem 

• Task 

– Rewrite original query to multiple similar queries 

• Challenges 

– Topic drift 

• Current Situation 

– Mainly limited to auto correction of spelling errors 
in practice 
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Query Reformulation is Difficult 

• Depending on the contents of both query and 
document 

• Except 

– Spelling error correction 

– Definite splitting and merging, e.g., “facebook” 

– Definite segmentation, e.g., “hot dog”, “united states” 
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Methods of Query Reformulation 

• Generative Approach:   
– Source Channel Model (Brill & More, ’00) 

– Source Channel (Cucerzan & Brill, ’04) 

– Source Model (Duan & Hsu, ’10) 

• Discriminative Approach:   
– MaxEnt (Li et al., ’06) 

– Log Linear Model (Okazaki et al., ’08) 

– Log Linear Model (Wang et al., ’11) 

– Conditional Random Field (Guo et al., ’08) 
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Source Channel Model 
(Brill & Moore, 2000; Duan & Hsu, 2011) 

• Source Channel Model 

 

 

 

• Source Model (Language Model) 

• Channel Model (Transformation Model) 
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Transformation Model 

• Model 

 

 

• Sequence of Transfemes  
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Learning and Prediction 

• Parameter Estimation 

– EM Algorithm 

– Pruning  

– Smoothing 

• Search 

– Trie: encoding dictionary 

– A* Algorithm 
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Log Linear Model 
(Wang et al, 2011) 

• Query reformulation  

• Transformation rules   

• Learning 

 

• Prediction 

 

• Can be used at both word level and query level 

• Model = log linear model 

• Both accurate and efficient 
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Learning and Prediction 

Learning System 

Generation System 

Model 

),(

),,(

),,(

22

11

N
c

N
m

cm

cm

ww

ww

ww



Dictionary 

mw cw



Example: Spelling Error Correction 

Generation System officier 

Dictionary Model 

officer 

office 

official 

offices 
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Learning 

Rule 
Extraction 

Model 
Learning 

 Model 
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Rule Extraction 

• Edit-distance based alignment: 

 

 

• Basic substitution rules: 

 

• Contextual substitution rules 

^ n i c o s o o f t $ 

^ m i c r o s o f t $ 

Misspelled: 

Correct: 

rmn  ,

,,^^,,^^ crcminiminimn 
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Log Linear Model 

• Model 

 

 

 

 

 

 

• Candidate Generation 
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Set of rules  
rewrite wm to wc  

Weight of rule 

All pairs of word w’
c and rule set R(wm,w’

c) 

Non-positive constraint, to improve efficiency in retrieval, 
Natural assumption 

0 r
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Model Parameter Estimation 

• Objective function 

 

 

 

 

• Algorithm 

– Constrained Quasi Newton Method (BFGS) 
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Matching with Rules Using 
Aho Corasick Tree 

e 0.0 

s -0.3 

…… …… 

NULL — 

a -0.1 

…… …… 

NULL — 

…… …… 

e a 

ea aa 

failure link 

leaf node link 

a e

a s

aa a

      are stored in  
an associated list 

Index all the     ‘s in the  
rules on the AC tree 












Matching with Dictionary  
Using Trie Tree 

• Traverse trie tree 

– Match the next position of wm  

– Apply a rule at the current position of wm  

• Two pruning strategies 

– If the sum of weights is  
smaller than the smallest  
weight in the top k list, prune  

    the branch 

– two search branches merge,  
prune the smaller branch  

^ 

m n a …… 

i 

Pruning 2 
^mic, -0.1 
^mic, -0.25 

c d 

Pruning 1 
^micr, -0.3 
Smallest weight 
in top k: -0.26 

r 



Conditional Random Field 
(Guo et al, 2008) 

• Sequential Prediction 

• Learning 

 

• Prediction 

 

• Can be used at both word level and query level 

• Model = conditional random field 

• A general word of query reformulation 
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Learning and Prediction 

Learning System 

Selection System 

Model 
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Example: Spelling Error Correction  

Selection System officier website 

Model 
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office website 



Candidate Selection Problem 

windows onecare 

window onecar 

Observed “noisy” word sequence 

“Ideal” word sequence 

original query 
word sequence 

“ideal” query 
word sequence 
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Conditional Random Field 

Introducing Refinement Operations 

oi-1 oi oi+1 

yi-1 yi yi+1 

xi-1 xi xi+1 

Operations 
Spelling:  insertion, deletion, substitution, transposition, …  

Word Stemming: +s/-s, +es/-es, +ed/-ed, +ing/-ing, … 61 



Extended Conditional Random Fields 
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Blending Problem 

• Steps 

– Rewrite original query to multiple similar queries 

– Retrieve with multiple queries 

– Blend results from multiple queries 

• Challenges 

– System to sustain searches with multiple queries 

– Blending model: matching scores are not 
comparable across queries 
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Blending 

Michael Jordan 

Michael I. Jordan 
Michael Jordan NBA 
Michael Jordan Berkeley 

similar  
queries 

retrieved  
documents 

retrieved  
documents 

re-ranking 

input 
query 
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Methods of Blending 

• Linear Combination (Xue et al., ’08) 

• Learning to Rank (Sheldon et al., ’11) 

• Kernel Methods (Wei et al., ’11) 
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Linear Combination 

• Matching model 

 

 

• Widely used in information retrieval 
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Learning to Rank 
(Sheldon et al., 2011) 
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• LambdaMerge: learning a single model for matching and 
ranking 

• LambdaRank as ranker 

• Directly optimizing NDCG 

• Features 

– Matching scores 

– Quality of reformulation 

– Quality of search result 

 



Kernel Method 
(Wu et al, 2011) 

• Query similarity and document similarity are 
given 

• ‘Smooth query document similarity’ by those of 
similar queries and documents 

• Interpretation: nearest neighbor in space of 
query document pairs (double KNN) 

• Automatically learning the weights of linear 
combination from click-data 

• Theoretically sound approach 
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Kernel Method 
(Wu et al, 2011) 

Query space 

q 

q’ 

d 

d' 

Document space 

Hilbert space 

kQ(q, q') 

Matching 

kIR(q, d)  

kIR(q', d') 

Similarity Functions 

Hilbert space 
ǩ ((q, d), (q', d')) 

Query-document pair space 

(q, d) 

(q’, d’) 

Hilbert space 

kD(d, d') 69 



Learning of Matching Model 

• Similarity Function: 𝑘 𝑥, 𝑦 = 𝜑𝑋 𝑥 , 𝜑𝑌(𝑦) ℋ  

• Input 

– Training data 𝑆 = 𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 1≤𝑖≤𝑁 

• Output 

– Similarity Function function 

• Optimization 

min
𝑘𝜖𝒦

1

𝑁
 𝑙 𝑘(𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖) + Ω(𝑘)

𝑁

𝑖=1

 

    

 

 

x1 

xm 
x2 

y1 

yn 

y2 

Space X Space Y 

Hilbert Space H 

X
Y

70 

Matching Function  

Matching Function  



Learning of Matching Model Using 
Kernel Methods 

• Assumption 

– Space of matching functions is RKHS generated by 
positive definite kernel 𝑘 : 𝑋 × 𝑌 × (𝑋 × 𝑌) 

• Optimization 

– min
𝑘∈𝐾

1

𝑁
𝑙(𝑘 𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖)+

𝜆

2
𝑘 2  

• Solution 

– 𝑘∗ 𝑥, 𝑦 =  𝛼𝑖𝑘 
𝑁
𝑖=1 (𝑥𝑖 , 𝑦𝑖), (𝑥, 𝑦)) 

71 



Learning Robust BM25 

• BM25 = Similarity Function 𝑘𝐵𝑀25(𝑞, 𝑑) 

• HAK 
𝑘 𝑞, 𝑑 , 𝑞′, 𝑑′ = 𝑘𝐵𝑀25(𝑞, 𝑑)𝑘𝑄(𝑞, 𝑞′)𝑘𝐷(𝑑, 𝑑′)𝑘𝐵𝑀25(𝑞

′, 𝑑′) 

• Solution (called Robust BM25) 

𝑘𝑅𝐵𝑀25 𝑞, 𝑑 = 𝑘𝐵𝑀25(𝑞, 𝑑) ∙  𝛼𝑖𝑘𝑄 𝑞, 𝑞𝑖 𝑘𝐷(𝑑, 𝑑𝑖)𝑘𝐵𝑀25(𝑞𝑖 , 𝑑𝑖)

𝑁

𝑖=1

 

 

 

• Deal with term mismatch  
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Similar Query Mining Problem 

• Task 

– Given click-through data or search session data 

– Find similar queries or similar query patterns 

– E.g.,  ny  new york,  distance between X and Y 
 how far is X from Y 

• Challenge 

– Dealing with noises 
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Mining of Similar Queries 

74 

q1 

q2 

qm 

…
.. 

d1 

d2 

dn 

…
.. 

-- q1 
-- q1’ 

-- qn 
-- qn’ 

…
…

 

Click-through data Search session data 

Similar queries can be found 
by co-click 

Similar queries can be found 
 from users’ query reformulations 



Methods of Similar Query Mining 

• Using click-through data 
– Calculating Pearson correlation coefficient (Xu & Xu, ‘11) 
– Agglomerative clustering (Beeferman & Burger, ‘00),  DBScan 

(Wen et al, ‘01), K-means (Baeza-Yates et al, ‘04), Query stream 
clustering (Cao et al, ’08; Liao et al, ‘12) 

– Random walk (Craswell & Szummer, ‘07) 

• Using search session data 
– Calculating Jacaard similarity (Huang et al, ‘03), mutual 

information  (Jensen et al, ‘06), likelihood ratio (Jones et al, ‘06) 

• Learning of query similarity 
– Query similarity learning as metric learning (Xu & Xu, ‘11) 

• Learning of query reformulation patterns 
– Mining of natural language question patterns (Xue et al, ‘12) 
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Pearson Correlation Coefficient 
(Xu & Xu 2011) 

• Use click-through Bipartite Graph 

• Assume that queries sharing many clicked URLs 
are similar 

• One step random walk 

• Measure 

 

 

 

• Selecting queries having large PCC values 
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Query Stream Clustering 
(Cao et al, 2011; Liao et al, 2012) 

• Average time complexity: linear order 

• Each query has only 3.1 clicked URLs, each URL has 
only 3.7 

• Only non-zero elements matter when using cosine 
similarity 

• Dimension array 
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Non-zero dimensions of 
query q 

d3 d5 d9 

d3 d5 d9 … … … … … … … … … 
Dimension 
array 

Clusters C1 C20 C100 C50 



Query Stream Clustering 

• An element at dimension array links to clusters 
having vectors with non-zero values at this element 

• Algorithm 

– Create cluster for first query 

– Repeat 
• If current query is close to one of the existing clusters, assign it to 

the cluster 

• Similarity calculation using dimension array (very efficient) 

• Otherwise, create new cluster for current query 

– Post processing to refine clusters 
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Random Walk 
(Craswell & Szummer, 2007) 

• Transition probability 

 

 

 

• Large self transition probability (query is 
similar to itself) 

• Random Walk 
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Likelihood Ratio Testing 
(Jones et al. 2006) 
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Query Similarity Learning as Metric 
Learning (Xu & Xu, ‘11) 

• Similar query pairs and dissimilar query pairs are given 

• Can we learn from head and propagate it to tail? 

• From fact “hotmail sign up” are “hotmail sign on” 
similar to learn fact “X sign up” and “X sign on” are 
similar  
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Query Similarity Learning 

• Objective function 

 

 

 

 

• Efficient optimization algorithm 
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Query Similarity Learning 
• N-gram vector space 

• Similar query pairs and dissimilar query pairs are given 

• Dot product as similarity 

• Learning linear transformation (weighted dot product) 

 

 

• M: positive semi-definite 
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Mining of Natural Language Question 
Patterns (Xue et al. 2012) 

• Steps 

– Collect query pairs from session data where first query is 
5w1h question 

– Remove common words (except stopwords) in query pairs 
to create query reformulation patterns 

– Output high frequency patterns 

• Example pattern 
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QRU-1 Dataset 

Joint Work with Michael Bendersky, 
Gu Xu, Bruce Croft 

85 

Downloadable at MSR Web Site 

bit.ly/qru1dataset  

bit.ly/qru1dataset


Motivation for QRU-1 

• Benchmark dataset for research on query 
reformulation, etc 

• Queries are as real as possible  

• Queries are related to existing benchmark 
datasets (e.g., TREC query sets) for better 
connection with existing work 

 

 



Content of Dataset 

• Seed: 100 queries from TREC Web Track  (2009 
and 2010) 

• Each query is assigned similar queries (on 
average 20 queries) 

• Similar queries represent the same or similar 
search intents as original queries 

• Similar queries may contain typos, stemming, 
synonyms 

• In total, 2036 similar queries 



1:obama family tree barack obama family 
obama family 
obama s family 
barack obama family tree 
the obama family 
barack obama s family 
obamas 
obama genealogy 
barack obama s family tree 
barack obama ancestry 
president obama s family 
obamas family 
obama family history 
obama s family tree 
barack obama genealogy 
barack obama family history 
barack obama geneology 
president obama and family 
obama s ancestry 
barak obama family tree 
barak obama family 
obama family tre 
obama and family tree 

Examples of 
Similar Queries 



Examples of 
Similar Queries 

95: earn money at home earn money from home 
earn money at home 
how to earn money at home 
earn money on the internet 
ways to earn money at 
home 
how to earn money from home 
earn extra money at home 
earning money from home 
earn extra cash at home 
earning money at home 
earn at home 
earn money working from home 
earn money from home free 
how to earn money on the internet 
earn cash at home 
earn currency at home 
earn money at hom 
earn money at hoem 



Process of Data Creation 

• Obtained 100 TREC queries 
• Trained a query generation model using the method by 

(Wang et al. 2011) and search log data at Bing 
(2010/07-2010/12) 

• Generated similar queries from TREC queries with the 
model 

• Manually removed mistakenly generated queries (23% 
of generated queries were removed) 

• Observed about 70% of the generated queries actually 
exist in real Bing log data 

• Got approval for release from MS legal team 



Guidelines for Manual Cleaning 

• Keep generated queries, if  

– they represent the same intents as the original 
queries, and 

– they are likely to be input by users, including typos 

• Otherwise discard the queries 

– E.g. “pictures of the obama family” 

– E.g. “obama family plant” 

– E.g. “michelle obama family tree” 



One Possible Way of Using The Data 

• Assuming similar queries are submitted by 
users 

• Conducting retrieval and ranking on TREC Web 
Track documents with the similar queries 

• The relevance performance can be worse or 
better than original queries 

• Conducting query transformations on the 
similar queries to improve the relevance 
performance 



Query Reformulation using QRU-1 



Query Reformulation using QRU-1 

Only small fraction of query 
reformulations improve performance 



Query Reformulation using QRU-1 

However, for a large number of topics there 
is at least one good reformulation 



Term 
Substitution 



Query Expansion 



Abbreviation 
induction 
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3. Matching with Dependency 
Model 



Outline of Section 3 

• Matching based on Term Dependency 

• Term Dependency Models 

 

103 



Matching based on Term Dependency 

• Matching of consecutive terms in query and 
document indicates higher relevance 

– “hot dog” 

– “hot dog” ≠ hot + dog 

• Query: order is quite free, but not completely free 

– “hot dog recipe”, “recipe hot dog” 

– “hot recipe dog” × 

• Term dependency: a sequence of terms 
representing soft query segmentation 



Factors of Term Dependency 

• Number of terms 
– 1 term (unigram) 

– Multiple terms (bigram, bi-terms …) 

• Order 
– N-gram 

– Unordered N-terms 

• Number of max skips 
– No skip 

– 𝑆 skips 



Types of Term Dependency 

• Term dependency in query 

– Noun phrases (Bendersky & Croft, ’08) 

– Phrases & proximities (Bendersky & Croft, ’10; Shi & 
Nie, ’10; Bendersky & Croft, ‘12) 

• Latent term dependency 

– Pseudo relevance feedback (Cao et al., ’08; Metzler 
& Croft ’07; Lease ’08; Bendersky et al., ’11) 

– Query expansion (Metzler ’11) 

 



Addressing Term Mismatch based on Term 
Dependency 

• Term dependency in query represents degree of 
matching between query and document 

– Document including “hot dog” has higher matching 
degree than document  including “hot” and “dog” 

• Latent term dependency uses relations with 
additional terms to help ‘infer’ degree of 
matching 



Matching with Term Dependencies 

• Term dependencies using Markov Random Fields 
(MRF) 
– Explicit term dependencies (Metzler & Croft, ’05) 

– Latent term dependencies (Metzler & Croft, 2008; 
Bendersky et al, ’11) 

– Weighted term dependencies (Bendersky et al., ’10) 

• Higher-order term dependencies using query 
hypergraphics (Bendersky & Croft, ’12) 

• Term dependencies using discriminative model 
(Shi & Nie, ’10) 

 



Markov Random Fields 
• Joint probability distribution represented  

by undirected graph 
– Nodes: random variables  

– Edges: dependencies between variables 

– Cliques: subset of nodes such that every two 
nodes are connected 

• Factorization of joint probability based 
on cliques 

𝑃 𝑥1 ⋯𝑥𝑁 =
1

𝑍
 𝜓 𝑐

𝑐∈𝑐𝑙𝑖𝑞𝑢𝑒 𝐺
 

 

 
potential 
function 

normalizing 
factor 

//upload.wikimedia.org/wikipedia/en/f/f7/Markov_random_field_example.png


Modeling Term Dependencies with MRF 
(Metzler & Croft, 2005) 

• Nodes 
– Document node 

– One node for each query term 

• Edges 
– Each query node is linked with document node 

– Dependent terms are linked together 

 

 
 

 

 

independence          sequential dependence      full dependence     



Modeling Term Dependencies with MRF 

• Cliques  

– Representing how query terms are matched in 
document 

– Matching scores determined by potential function 

• Joint probability 

𝑃Λ 𝐪, 𝐝 =
1

𝑍Λ
 exp 𝜆𝑐𝑓(𝑐)

𝑐∈𝑐𝑙𝑖𝑞𝑢𝑒 𝐺

 

• Matching function 
𝑃 𝐝|𝐪  

 



Modeling Term Dependencies with MRF 

• Feature functions 𝑓(𝑐) 

– Term:  

𝑓𝑇 𝑞𝑖 , 𝐝 = log 1 − 𝛼𝐝

𝑡𝑓𝑞𝑖,𝐝

|𝐝|
+ 𝛼𝐝

𝑐𝑓𝑞𝑖

|𝐶|
 

– Ordered phrase: 
𝑓𝑂 𝑞𝑖 ⋯𝑞𝑖+𝑘 , 𝐝 =

log 1 − 𝛼𝐝

𝑡𝑓#1 𝑞𝑖⋯𝑞𝑖+𝑘 ,𝐝

|𝐝|
+ 𝛼𝐝

𝑐𝑓#1 𝑞𝑖⋯𝑞𝑖+𝑘

|𝐶|
 

– Unordered phrase: 
𝑓𝑈 𝑞𝑖 ⋯𝑞𝑖+𝑘 , 𝐝 =

log 1 − 𝛼𝐝

𝑡𝑓#uwN 𝑞𝑖⋯𝑞𝑖+𝑘 ,𝐝

|𝐝|
+ 𝛼𝐝

𝑐𝑓#uwN 𝑞𝑖⋯𝑞𝑖+𝑘

|𝐶|
 



Latent Term Dependencies  
(Metzler & Croft, 2007) 

• Assumption 

– Latent terms exist behind query 

– E.g., collecting terms by pseudo relevance feedback 

• Modeling latent term dependencies 

– Constructing MRF on extended graph 

– Term dependencies between query 𝐪 and document 𝐝 

– Latent dependencies between 𝒆 = 𝑒1, ⋯ , 𝑒𝑘 and 𝐝 

– Matching function 𝑃 𝐝|𝒒, 𝒆  𝐝 

𝑞1 𝑞2 𝑞3 𝑒1 𝑒2 



Utilizing and Learning Weights of 
Term Dependencies 

• High weights for most discriminative term 
dependencies (like IDF for unigram) 

 

 

 

 

• Leveraging different data resources such as 
web N-gram, Wikipedia etc. for estimating 
weights  

𝐝 

𝑞1 𝑞2 𝑞3 

𝜆 𝑞1𝑞2, 𝐝  𝜆 𝑞2𝑞3, 𝐝  

𝐝 

𝑞1 𝑞2 𝑞3 

IDF 𝑞1  IDF 𝑞2  IDF 𝑞3  



Weighted Term Dependencies  
(Bendersky et al., 2010) 

• Represent 𝜆 𝑐  with features 

𝜆 𝑞𝑖 , 𝐝 =  𝑤𝑗
𝑢𝑛𝑖𝑔𝑗

𝑢𝑛𝑖 𝑞𝑖

𝑘𝑢𝑛𝑖

𝑗=1

 

𝜆 𝑞𝑖𝑞𝑖+1, 𝐝 =  𝑤𝑗
𝑏𝑖𝑔𝑗

𝑏𝑖 𝑞𝑖𝑞𝑖+1

𝑘𝑏𝑖

𝑗=1

 

• Matching function 

𝑃 𝐝|𝐪 =  𝑤𝑗
𝑢𝑛𝑖  𝑔𝑗

𝑢𝑛𝑖 𝑞𝑖 𝑓𝑇 𝑞𝑖, 𝐝

𝑞𝑖∈𝐪

𝑘𝑢𝑛𝑖

𝑗=1

+  𝑤𝑗
𝑏𝑖  𝑔𝑗

𝑏𝑖 𝑞𝑖𝑞𝑖+1 𝑓𝑂 𝑞𝑖𝑞𝑖+1, 𝐝 + 𝑓𝑈 𝑞𝑖𝑞𝑖+1, 𝐝

𝑞𝑖𝑞𝑖+1 ∈𝐪

𝑘𝑏𝑖

𝑗=1

 

 

 

rank 

𝐝 

𝑞1 𝑞2 𝑞3 

𝜆 𝑞1𝑞2, 𝐝  𝜆 𝑞3, 𝐝  



Features for Representing Weights 

data source feature description  

collection 𝑐𝑓𝑒 
𝑑𝑓𝑒 

collection frequency for e 
document frequency for e 

N-Grams 
Query Log 

𝑔𝑓 𝑒  
𝑞𝑒_𝑐𝑛𝑡 𝑒  
𝑞𝑝_𝑐𝑛𝑡 𝑒  

n-gram count of e  
count of exact match of e and a query in the log 
count of times e occurs within a query in the log 

Wikipedia titles 𝑤𝑒_𝑐𝑛𝑡(𝑒) 
𝑤𝑝_𝑐𝑛𝑡 𝑒  

Does e appears as a Wikipedia title? 
Count of times e occurs within a Wikipedia title  

𝑒 can be either a query term 𝑞𝑖  or a sequential query term pair 𝑞𝑖𝑞𝑖+1 

• Features from different data resources (e.g., web N-
gram, query log, Wikipedia ...) 



D 1 2 n … 

Concept occurrences in 
the document  
(Local Factors) 

Concept co-occurrence in the 
highest scoring passage 

(Global Factor) 

dogs law law enforcement 

Query Hypergraphics for Dependencies 
(Bendersky & Croft, 2012) 

Courtesy from Michael Bendersky 



Discriminative Model for Dependency 
(Shi & Nie, 2010) 

• Discriminative model 

𝑃 𝑅|𝐷, 𝑄 =
1

𝑍
exp  𝜆𝑖𝑓𝑖 𝑄,𝐷

𝑛

𝑖=1
 

• Features are flexible  

        𝑆𝐶 𝐷, 𝑄 =  𝜆𝑈 𝑞𝑖|𝑄 𝑓𝑈 𝑞𝑖 , 𝐷𝑞𝑖∈𝑄  

                         + 𝜆𝐵 𝑞𝑖𝑞𝑖+1|𝑄 𝑓 𝐵 𝑞𝑖 , 𝐷𝑞𝑖𝑞𝑖+1∈𝑄  

                         +  𝜆𝐶𝑤
𝑞𝑖 , 𝑞𝑗|𝑄 𝑓 𝑐𝑤 𝑞𝑖 , 𝑞𝑗 , 𝐷𝑞𝑖,𝑞𝑗∈𝑄;𝑖≠𝑗𝑤∈𝑊  
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4. Matching with Statistical Machine 
Translation 



Outline of Section 4 

• Statistical Machine Translation 

• Matching with Translation Model 

• Issues in Matching with Translation Model 

• Methods for Matching with Translation 
Models 
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Statistical Machine Translation (SMT) 

• Given sentence 𝐶 in source language, 
translates it into sentence 𝐸 in target 
language 

𝐸∗ = argmax𝐸𝑃 𝐸|𝐶  

• Linear combination of features 

𝑃 𝐸|𝐶 =
1

𝑍 𝐶, 𝐸
exp 𝜆𝑖ℎ𝑖(𝐶, 𝐸) 

𝑖

 

𝐸∗ = argmax𝐸  𝜆𝑖ℎ𝑖(𝐶, 𝐸) 

𝑖

 



Typical Translation Models 

• Word-based  

– Translating word to word 

• Phrase-based 

– Translating based on phrase 

• Syntax-based 

– Translating based on syntactic structure 



Word-based Model: IBM Model One  
(Brown et al., 1993) 

• Generating target sentence 
– Length 𝑀 of target sentence is generated 

– For each target sentence position, 𝑖 = 1:M  
• Word 𝑐𝑗  in source sentence 𝐶 is selected  

• 𝑒𝑖 at position 𝑖 is generated depend on 𝑐𝑗 

𝑃 𝐸|𝐶 =
𝜖

𝐿 + 1 𝑀
  𝑃 𝑒𝑖|𝑐𝑗

𝑁

𝑗=1

𝑀

𝑖=1
 

<NULL>    这    房子    很    小 𝐶: 

   1       2        3      4        5 
house  is  very  small the 

𝑃 𝑡ℎ𝑒|这  

𝐸: 



Phrase-Based Models 

Courtesy from Jianfeng Gao 



Model of Query Generation and Retrieval 

• Task of retrieval: find the a posteriori most 
likely documents given query 

𝑃 𝐝|𝐪,𝒰 = 𝑃 𝐪 𝐝,𝒰 ⋅𝑃 𝐝|𝒰
𝑃 𝐪|𝒰
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Matching with Translation Model 

• Translating document d to query q (or 
translation document language model to query 
language model) 

• Given query q and document d, translation 
probability is viewed as matching score 
between q and d 

• Difference from conventional translation model 

– Translation in same language 

– Self translation plays important role 



Addressing Term Mismatch with  
Translation Model 

• Translation probability 𝑃(𝑞|𝑤) represents 
matching degree between words in query and 
document 



Approaches to Matching with 
Translation Model 

• Translating document to query 

 

 

 

• Translating document model to query model  

 

 

 

 

 

 

 

 

 

 

 

matching with translation 
probability 𝑃 𝐪|𝐝  

document 
language  model 

query language 
model 

translation 

matching based on query language model 



Issues in Matching with Translation 
Models 

• Types of Training Data 

• Types of Document Fields 

• Types of Translation Models 



Types of Training Data for Learning Translation 
Probabilities 

• Synthetic data (Berger & Lafferty, ’99) 

• Document collection (Karimzadehgan & Zhai, ’10) 

• Title-body pairs of documents (Jin et al., ’02) 

• Query-title pairs in click-through data (Gao et al., ’10) 

 

 

 

 
http://webmessenger.msn.com 
title: “msn web messenger” 

clicked queries score 

msn web 0.6675 

webmensseger 0.6621 

msn online 0.6403 

Windows web messanger 0.6321 

talking to friends on msn 0.6130 

… … 

http://webmessenger.msn.com/


Types of Document Fields 

• Use of title is better than body (Huang et al., ‘10) 

• Titles and queries have similar languages 

• Bodies and queries have very different languages 

 

 

 

Query

Title

Anchor

Body

0
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4000
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Unigram
Bigram

Trigram
4-gram

𝑃𝑒𝑟𝑝𝑙𝑒𝑥𝑖𝑡𝑦 𝑃 , 𝑄 = 2𝐻(𝑃 ,𝑄) 

= 2−  𝑝 𝑠 log 𝑞𝑠𝑠  



Methods for Matching with Translation 
Models 

• Translating document to query 

– Word-based model (Berger & Lafferty, ’99) 

– Phrase-based model (Gao et al., ’10) 

– Topic-based model (Gao et al., ’11) 

– Learning translation probabilities from documents 
(Karimzadehgan & Zhai, ’10) 

• Translating document model to query model 

– Translated query language model (Jin et al., ’02) 



Matching with Word-based Translation 
Model 

• Basic model 

𝑃 𝐪|𝐝 =  𝑃 𝑞|𝐝

𝑞∈𝐪

=   𝑃 𝑞|𝑤 𝑃 𝑤|𝐝

𝑤∈𝐝𝑞∈𝐪

 

 

• Smoothing to avoid zero translation probability  
(Berger & Lafferty, ’99) 

𝑃 𝐪|𝐝 =  𝛼𝑃 𝑞|𝑐𝑜𝑙𝑙 + 1 − 𝛼  𝑃 𝑞|𝑤 𝑃 𝑤|𝐝

𝑤∈𝐝𝑞∈𝐪

 

 

• Adding self-translation (Gao et al., ’10) 

𝑃 𝐪|𝐝 =  𝛼𝑃 𝑞|𝑐𝑜𝑙𝑙 + 1 − 𝛼 𝛽𝑃 𝑞|𝐝 + 1 − 𝛽  𝑃 𝑞|𝑤 𝑃 𝑤|𝐝

𝑤∈𝐝𝑞∈𝐪

 

document language model translation probability 

background unigram model 

unsmoothed document model 



Examples of Translation Probabilities 



Matching with Phrase-based Translation 
Models (Gao et al., ’10) 

• Phrase-based translation model 

 
 

 

 

– Maximum approximation  
𝑃 𝐪|𝐝 ≈ max

𝑆,𝑇,𝑀 ∈𝑩 𝐪,𝐝
𝑃 𝑇|𝐝, 𝑆 𝑃 𝑀|𝐝, 𝑆, 𝑇  

– Max probability assignment via dynamic programming 

𝑃 𝐪 𝐝 ≈ max
𝑆,𝑇,𝑀 ∈𝐵 𝐝,𝐪,𝐴∗

𝑃 𝑇 𝐝, 𝑆 = max
𝑆,𝑇,𝑀 ∈𝐵 𝐝,𝐪,𝐴∗

 𝑃(𝐪𝑘|𝐰𝑘)

𝑘=1…𝐾
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Polylingual Topic Model  
(Mimno et al., 2009) 

• An extension of LDA  
– Modeling polylingual document tuples 

– Document tuple: documents that are loosely equivalent but written in 
different languages 

– E.g., Wikipedia articles in French, English and German. 
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Topic-based Translation Model 
(Gao et al., 2011) 

• Query and document use different vocabularies to express the 
same distribution of topics 

𝑃 𝐪|𝐝 =  𝑃𝑏𝑙𝑡𝑚 𝑞|𝐝

𝑞∈𝐪

=   𝑃 𝑞|𝜙𝑧
𝐪

𝑧

𝑃 𝑧|𝜃𝐝

𝑞∈𝐪

 

• Smoothing and addressing self translation  

𝑃𝑠 𝐪|𝐝 =  𝜆1𝑃 𝑞|𝐶 + 1 − 𝜆1 𝜆2𝑃 𝑞|𝐝 + 1 − 𝜆2 𝑃𝑏𝑙𝑡𝑚 𝑞|𝐝

𝑞∈𝐪

 

 

 

 

 

 

 

𝐷 

|𝐪| 

𝜽 

𝑧 𝑞 

𝛼 

𝝓𝐪 𝜷𝐪 

𝑧 𝑤 
|𝐝| 

𝜷𝐝 𝝓𝐝 

𝐾 

unsmoothed 
background model 

unsmoothed 
document model 
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𝜆2 = 0: no self-translation  



Matching with Translated Query Language Model 
(Jin et al., ’02) 

𝑃 𝐪|𝐝,𝐌 = 𝜖  𝜆
𝑃 𝑞𝑖|𝜙,𝐌

𝐝 + 1
+  𝑃 𝑞𝑖|𝑤,𝐌 𝑃 𝑤|𝐝

𝑤∈𝐝

+ 1 − 𝜆 𝑃 𝑞𝑖|𝐺𝐸

𝑞𝑖∈𝐪

 

 document 
language model 

translate doc word to 
query word 

background language 
model 

doc language 
model 𝑃 𝑤|𝐝  

𝐝 

title-doc pairs 

translation model 
𝑃 𝑞𝑖|𝑤,𝐌  

𝐪 matching with  
𝑃 𝐪|𝐝,𝐌  

query language 
model 𝑃 𝑤|𝐝,𝐌  



Learning Translation Probabilities from 
Documents (Karimzadehgan & Zhai, ’10) 

• Mutual information of words 𝑤, 𝑢  

𝐼 𝑤; 𝑢 =   𝑝 𝑋𝑤, 𝑋𝑢 log
𝑝 𝑋𝑤, 𝑋𝑢

𝑝 𝑋𝑤 𝑝 𝑋𝑢𝑋𝑢=0,1𝑋𝑤=0,1
 

 

 

 

 

• Translation probability 

𝑃𝑡 𝑤|𝑢 =

1 − 𝛼
𝐼 𝑤; 𝑢

 𝐼 𝑤′; 𝑢𝑤′
𝑤 ≠ 𝑢

𝛼 + 1 − 𝛼
𝐼 𝑢; 𝑢

 𝐼 𝑤′; 𝑢𝑤′
𝑤 = 𝑢

 

𝑋𝑤 = 0 𝑋𝑤 = 1 

𝑋𝑢 = 0 

𝑋𝑢 = 1 



Axiomatic Analysis of Translation Probabilities 
(Karimzadehgan & Zhai, ‘12) 

• General constraints 

– Constraint 1: ∀𝑣,𝑤, 𝑃 𝑤 𝑤 = 𝑃(𝑣|𝑣) 

– Constraint 2: ∀𝑣,𝑤, 𝑖𝑓 𝑤 ≠ 𝑣, 𝑡ℎ𝑒𝑛 𝑃 𝑤 𝑤 ≥ 𝑃(𝑤|𝑣) 

– Constraint 3: ∀𝑣,𝑤, 𝑖𝑓 𝑤 ≠ 𝑣, 𝑡ℎ𝑒𝑛 𝑃 𝑤 𝑤 ≥ 𝑃(𝑣|𝑤) 

• Additional constraints 

– Constraint 4: 𝑖𝑓 𝑐 𝑤, 𝑢 > 𝑐 𝑤, 𝑣  𝑎𝑛𝑑  𝑐 𝑤′, 𝑢 =  𝑐 𝑤′, 𝑣𝑤′𝑤′ , 
𝑡ℎ𝑒𝑛 𝑃 𝑤 𝑢 > 𝑃(𝑤|𝑣) 

– Constraint 5: 𝑖𝑓 𝑐 𝑤, 𝑢 = 𝑐 𝑤, 𝑣  𝑎𝑛𝑑  𝑐 𝑤′, 𝑢 <  𝑐 𝑤′, 𝑣𝑤′𝑤′ , 
𝑡ℎ𝑒𝑛 𝑃 𝑤 𝑢 > 𝑃(𝑤|𝑣) 

*𝑐 𝑤, 𝑢 : the number of co-occurrences of words 𝑤 𝑎𝑛𝑑 𝑢 in context  
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5. Matching with Topic Model 



Outline of Section 5 

• Topic Modeling 

• Methods of Matching with Topic Model 

• Two Approaches to Topic Modeling 
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Topic Modeling 

• Input 
– Document collection 

• Processing 
– Discover latent topics in document collection 

• Output 
– Latent topics in document collection  
– Topic representations of documents 

word1 

word2 

word3 

… 

word-M 

topic1 

topic2 

topic-K 

… 

doc1 

doc2 

doc3 

doc-N 

… 



Topics and Document Representations 

document topics 

document 
representation 



Deal with Term Mismatch with Topic Model 

• Topics of query and document are identified 

• Match query and document through topics, 
although query and document do not share 
terms 

 
Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 Topic8 Topic9 Topic10 

OPEC Africa contra school Noriega firefight plane Saturday Iran senate 

oil South Sandinista student Panama ACR crash coastal Iranian Reagan 

cent African rebel teacher Panamanian forest flight estimate Iraq billion 

barrel Angola Nicaragua education Delval park air western hostage budget 

price apartheid Nicaraguan college canal blaze airline Minsch Iraqi Trade 



Methods of Matching Using Topic Model 

• Topic level matching 
– Probabilistic model: PLSI (Hofmann ’99), LDA (Blei et 

al., ’03) 

– Non-probabilistic model: LSI (Deerwester et al., ’88), 
NMF (Lee & Seung ’00), RLSI (Wang et al., ’11), GMF 
(Wang et al., ’12) 

• Document smoothing 
– Clustering-based (Kurland & Lee ’04, Diaz ’05) 

– LDA-based (Wei & Croft ’06) 

• Query smoothing  
– PLSI-based (Yi & Allan ’09) 



Topic Level Matching 

• Representing query and document as topic 
distributions (or topic vectors) 

– 𝐪 → 𝑃 𝑧|𝐪  

– 𝐝 → 𝑃 𝑧|𝐝  

• Similarities 

– Cosine similarity 

– Symmetric KL-divergence: 
 𝑃 𝑧 𝐪 ln

𝑃 𝑧 𝐪

𝑃 𝑧 𝐝𝑧 +  𝑃 𝑧 𝐝 ln
𝑃 𝑧 𝐝

𝑃 𝑧 𝐪𝑧  

… 



Representing query/doc with topics 
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Document Smoothing with Topics 
(Wei & Croft, 2006) 

• Topic model: PLSI 

𝑃𝑃𝐿𝑆𝐼 𝑤|𝐝 =  𝑃 𝑤|𝑧 𝑃𝑃𝐿𝑆𝐼 𝑧|𝐝

𝑧

 

• Topic model: LDA 

𝑃𝐿𝐷𝐴 𝑤|𝐝 =  𝑃 𝑤|𝑧 𝑃𝐿𝐷𝐴 𝑧|𝐝

𝑧

 

• Combination of language model and topic model 
𝑃 𝑤|𝐝 = 𝛼𝑃𝐿𝑀 𝑤|𝐝 + 1 − 𝛼 𝑃𝑇𝑀 𝑤|𝐝  

 



Query Smoothing with Topic Model 
(Yi & Allan, 2009) 

• Topic model 

𝑃𝑇𝑀 𝑤|𝐪 =  𝑃 𝑤|𝑧 𝑃 𝑧|𝐪
𝑧

 

• Generate words from topic model 

• Query expansion with generated words 
 

 

 



Topic Modeling: Two Approaches 

• Probabilistic approach 

 

 

 

• Non-probabilistic approach 

D 

word 

document 
document 

topic 
word 

topic 

U ≈ VT × 

𝑁 
𝑀 

𝑑 𝑧 𝑤 



Topic Modeling: Two Approaches 
(cont’) 

• Probabilistic approach 
– Model: probabilistic model (graphical model) 

– Learning: maximum likelihood estimation 

– Methods: PLSI, LDA 

• Non-probabilistic approach 
– Model: vector space model 

– Learning: matrix factorization 

– Methods: LSI, NMF, RLSI 

• Non-probabilistic models can be reformulated 
as probabilistic models 



Probabilistic Topic Model 

• Topic: probability distribution over words 

• Document: probability distribution over topics  

• Graphical model 
– Word, topic, document, and topic distribution are 

represented as nodes 

– Probabilistic dependencies are represented as 
directed edges 

– Generation process 

• Interpretation: soft clustering 



Probabilistic Latent Semantic Indexing 
(Hofmann 1999) 

• For each document  
– Generate doc 𝑑 with probability 𝑃(𝑑) 

– For each word 
• Generate topic 𝑧 with probability 𝑃(𝑧|𝑑)  

• Generate word 𝑤 with probability 𝑃 𝑤 𝑧  

𝑁 
𝑀 

𝑑 𝑧 𝑤 

document 
topic 

observed word 



Latent Dirichlet Allocation  
(Blei et al., 2003) 

• Generation process 
– Word distribution given topic 𝜙~Dir 𝛽  

– For each document: 

• Determine topic distribution 𝜃~Dir 𝛼  

• For each word: 

– Generate topic 𝑧~Mul 𝜃  

– Generate word 𝑤~Mul 𝜙  

𝐷 
𝑀 

𝜃 𝑧 𝑤 𝛼 

𝐾 

𝜙 𝛽 

Dirichlet 
prior  

topic distribution 
given document 

topic 

observed word 

word distribution 
given topic 

Dirichlet prior 



Non-probabilistic Topic Model 

• Document: vector of words 

• Topic: vector of words 

• Document representation: combination of 
topic vectors 

• Matrix factorization 

• Interpretation: projection to topic space 

 

 

 

 



 

 

VT 

𝐕T
𝑅×𝑁 

 

 

             Σ   

𝚺𝑅×𝑅 

=             U 

𝐔𝑀×𝑅 

Latent Semantic Indexing 
(Deerwester et al., 1990)  

• Representing document collection with co-occurrence 
matrix (TF or TFIDF) 

• Performing Singular Value Decomposition (SVD) and 
producing k-dimensional topic space 

 

D 

𝐃𝑀×𝑁 

𝐾 

𝐾 

𝐾 

≈ 



Nonnegative Matrix Factorization 
(Lee and Seung, 2001) 

 

 

 

 

• U and V are nonnegative 
min
𝐔,𝐕

𝐃 − 𝐔𝐕T
𝐹

 

𝑠. 𝑡. 𝑢𝑖𝑗 ≥ 0; 𝑣𝑖𝑗 ≥ 0 

D 

word 

document 
document 

topic 
word 

topic 

U ≈ VT × 



Regularized Latent Semantic Indexing 
(Wang et al., 2011) 

 

 

 

 

• Topics are sparse 

 word representation 

of doc n topic matrix 
topic representation 

of doc n 

topics are sparse 

D 

word 

document 
document 

topic 
word 

topic 

   U 

0 

0 

0 

1 

0 

0 

2 

0 

0 

9 

0 

0 

0 

5 

0 

0 

0 

0 

0 

0 

6 

1 

0 

4 

0 

0 

0 

0 

1 

0 

0 

0 

0 

≈ VT × 

min
𝐔,𝐕

 𝐝𝑛 − 𝐔𝐯𝑛 2
2

𝑁

𝑛=1

+ 𝜆1  𝐮𝑘 1

𝐾

𝑘=1

+ 𝜆2  𝐯𝑛 2
2

𝑁

𝑛=1

 



Probabilistic Interpretation of 
Nonprobabilistic Models (RLSI) 

• Document generated  according to Gaussian distribution 
𝑃 𝐝𝑛 𝐔, 𝐯𝑛 ∝ exp − 𝐝𝑛 − 𝐔𝐯𝑛 2

2  

• Laplacian prior 
𝑃 𝐮𝑘 ∝ exp −𝜆1 𝐮𝑘 1  

• Gaussian prior 
𝑃 𝐯𝑛 ∝ exp −𝜆2 𝐯𝑛 2

2  

𝑁 

𝐮𝑘 𝐯𝑛 𝐝𝑛 

𝐾 

min
𝐔,𝐕

 𝐝𝑛 − 𝐔𝐯𝑛 2
2

𝑁

𝑛=1

+ 𝜆1  𝐮𝑘 1

𝐾

𝑘=1

+ 𝜆2  𝐯𝑛 2
2

𝑁

𝑛=1
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Matching in Latent Space 
• Motivation 

– Matching between query and document in latent space 

• Assumption 

– Queries have similarity 

– Document have similarity 

– Click-through data represent “similarity” relations between 
queries and documents 

• Approach 

– Projection to latent space  

– Regularization or constraints 

• Results 

– Significantly enhance accuracy of query document 
matching 

 

 

 



Matching in Latent Space 

q1 

qm 
q2 

d1 

dn 

d2 

Query Space Document Space 

q1 
d2 

qm 

dn 

d1 

q2 Latent Space 

qL

dL



IR Models as Similarity Functions  
(Xu and Li 2010) 

q1 

qm q2 

d1 

dn 

d2 

Query Space Document Space 

q1 
d2 

qm 

dn 

d1 

q2 

New Space 

'

unigram 

unigram 

unigram 

unigram 

unigram 

unigram 

unigram unigram 

unigram 

VSM, BM25, 
LM, MRF 

Mapping functions 
are diagonal matrices 



IR Models Are Similarity Functions 

• VSM 
– BM25 𝑞, 𝑑 =  𝜙𝑄

𝑉𝑆𝑀 𝑞 , 𝜙𝐷
𝑉𝑆𝑀 𝑑 , for all 𝑤 ∈ 𝑉 

  𝜙𝑄
𝑉𝑆𝑀 𝑞 𝑤 = 𝑡𝑓𝑖𝑑𝑓 𝑤, 𝑞   and 𝜙𝐷

𝑉𝑆𝑀 𝑑 𝑤 = 𝑡𝑓𝑖𝑑𝑓 𝑤, 𝑑   

 
• BM25 

– BM25 𝑞, 𝑑 =  𝜙𝑄
𝐵𝑀25 𝑞 , 𝜙𝐷

𝐵𝑀25 𝑑 , for all 𝑤 ∈ 𝑉 

 𝜙𝑄
𝐵𝑀25 𝑞 𝑤 =

𝑘3+1 ×𝑡𝑓 𝑤,𝑞

𝑘3+𝑡𝑓 𝑤,𝑞
 

 𝜙𝐷
𝐵𝑀25 𝑑 𝑤 = IDF 𝑤 ⋅

𝑘1+1 ×𝑡𝑓 𝑤,𝑑

𝑘1 1−𝑏+𝑏⋅
𝑙𝑒𝑛 𝑑

𝑎𝑣𝑔𝐷𝑜𝑐𝐿𝑒𝑛
+𝑡𝑓 𝑤,𝑑

 

 
• LMIR 

– LMIR 𝑞, 𝑑 =  𝜙𝑄
𝐿𝑀𝐼𝑅 𝑞 , 𝜙𝐷

𝐿𝑀𝐼𝑅 𝑑 + 𝑙𝑒𝑛(𝑞) ⋅ log
𝜇

𝑙𝑒𝑛(𝑑)+𝜇
, for all  𝑤 ∈ 𝑉 

   𝜙𝑄
𝐿𝑀𝐼𝑅 𝑞 𝑤 = 𝑡𝑓 𝑤, 𝑞  

  𝜙𝐷
𝐿𝑀𝐼𝑅 𝑑 𝑤 = log 1 +

𝑡𝑓 𝑤,𝑑

𝜇⋅𝑃 𝑤
, where 𝑃 𝑤  plays similar role as IDF in BM25 



Problem with IR Models: Term 
Mismatch 

• Matching in Latent Space can solve the 
problem by 

– Reducing dimensionality of latent space (from 
term level matching to semantic matching) 

– Correlating semantically similar terms (matrices 
are not diagonal) 

– Automatically learning mapping functions from 
data 

• Generalized and Learnable of IR models 
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Example: Projecting Keywords and 
Images into Latent Space 

 



Partial Least Square (PLS) 

• Setting 
– Two spaces:  𝒳 ⊂ ℝ𝑚 and 𝒴 ⊂ ℝ 𝑛. 

• Input 
– Training data: 𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 1≤𝑖≤𝑁,  𝑟𝑖 ∈ {+1, −1} 

• Output 
– Similarity function 𝑓(𝑥, 𝑦) 

• Assumption 
– Two linear (and orthonormal)  transformations 𝐿𝒳 and 𝐿𝒴 

– Dot product as similarity function 𝐿𝒳
𝑇𝑥,  𝐿𝒴

𝑇𝑦 =𝑥𝑇𝐿𝒳 𝐿𝒴
𝑇 𝑦 

• Optimization 

𝑎𝑟𝑔𝑚𝑎𝑥𝐿𝒳 ,𝐿𝒴
   𝑥𝑖

𝑇𝐿𝒳  𝐿𝒴
𝑇 𝑦𝑖 −  𝑥𝑖

𝑇𝐿𝒳  𝐿𝒴
𝑇 𝑦𝑖

𝑟𝑖=−1
 

𝑟𝑖=+1
 

      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐿𝒳
𝑇𝐿𝒳 = 𝐼𝑘×𝑘 , 𝐿𝒴

𝑇𝐿𝒴 = 𝐼𝑘×𝑘 

Rri or   



Solution of Partial Least Square 

• Non-convex optimization 

• Can prove that global optimal solution exists 

• Global optimal can be found by solving  SVD (Singular Value 
Decomposition) 

• SVD of Matrix   𝑀𝑠−𝑀𝐷 = 𝑈Σ𝑉𝑇 

  

 



Regularized Mapping to Latent Space (RMLS) 

• Setting 
– Two spaces:  𝒳 ⊂ ℝ𝑚 and 𝒴 ⊂ ℝ 𝑛. 

• Input 
– Training data: 𝑥𝑖 , 𝑦𝑖 , 𝑟𝑖 1≤𝑖≤𝑁,  𝑟𝑖 ∈ {+1, −1} 

• Output 
– Similarity function 𝑓(𝑥, 𝑦) 

• Assumption 
– L1 and L2  regularization on 𝐿𝒳 and 𝐿𝒴 (sparse transfromations) 

– Dot product as similarity function 𝐿𝒳
𝑇𝑥,  𝐿𝒴

𝑇𝑦 =𝑥𝑇𝐿𝒳 𝐿𝒴
𝑇 𝑦 

• Optimization 

𝑎𝑟𝑔𝑚𝑎𝑥𝐿𝒳 ,𝐿𝒴
   𝑥𝑖

𝑇𝐿𝒳  𝐿𝒴
𝑇 𝑦𝑖 −  𝑥𝑖

𝑇𝐿𝒳  𝐿𝒴
𝑇 𝑦𝑖

𝑟𝑖=−1
 

𝑟𝑖=+1
 

      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑙𝑥 ≤ 𝜗𝑥, 𝑙𝑦 ≤ 𝜗𝑦,  ∥ 𝑙𝑥 ∥≤ 𝜆𝑥,   ∥ 𝑙𝑦 ∥≤ 𝜆𝑦, 

Rri or   



Solution of Regularized Mapping to 
Latent Space 

• Coordinate Descent 

• Repeat 

– Fix 𝐿𝑥,  update𝐿𝑦 

– Fix 𝐿𝑦,  update𝐿𝑥 

• Update can be parallelized by rows 
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Comparison 

PLS RMLS 

Assumption Orthogonal  L1 and L2 
Regularization 

Optimization 
Method 

Singular Value 
Decomposition 

Coordinate 
Descent 

Optimality Global 
optimum 

Local optimum 

Efficiency Low High 

Scalability  Low High 



Experimental Results 
eEnterprise Search Web Search 

• RMLS and PLS work better than BM25, Random Walk, Latent 
Semantic Indexing 

• RMLS works equally well as PLS, with higher learning 
efficiency and scalability 



Graphical Model Representation 
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7. Generalization: Learning to 
Match 
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Matching between Heterogeneous 
Data is Everywhere 

• Matching between user and product 
(collaborative filtering) 

• Matching between text and image (image 
annotation) 

• Matching between people (dating) 

• Matching between languages (machine 
translation) 

• Matching between receptor and ligand (drug 
design) 
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Matching Problem: Instance Matching 

x1 

xm 

y1 

yn 

y2 

y3 
x2 
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Matching Problem: Instance Matching 
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Matching Problem: Content Matching 

Query space 
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x5 
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Document space 
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Matching Problem: Content Matching 
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Formulation of Learning Problem 

• Learning matching function  

 

 

• Training data 

• Generated according to  

 

  

 

 

 

191 

 ),( yxf

),,(,),,,( 111 NNN ryxryx 

),|(~   ),|(~    ),(~ YXRPrXYPyXPx



Graphical Model of Data Generation Process 
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Formulation of Learning Problem 

• Loss Function 

 

• Risk Function 

 

 

• Objective Function in Learning 
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8. Summary and Open Problems 
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Summary of Tutorial 

• Query document matching is biggest 
challenge in search 

• Machine learning for matching between query 
and document is making progress 

• Matching at term, phrase, sense, topic, and 
structure levels 

• Matching through query, document, query-
transformations 

• General problem: learning to match 
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Approaches to Learning for Matching 
Between Query and Document 

• Matching with Dependency Model 

• Matching by Query Reformulation 

• Matching with Translation Model 

• Matching with Topic Model 

• Matching in Latent Space 
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Challenges and Open Problems 

• Evaluation measures 
– Cranefield approach has limitation 

• Topic drift 
– Language is synonymous and polysemous 

• Scalability 
– E.g., topic modeling needs large scale computing 

environment 

• Missing information 
– Long tail challenge 
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Challenges and Open Problems (2) 

• Divide and conquer 

– Classifying queries and building different matching 
models 

• Existing knowledge 

– How to incorporate existing knowledge such as 
Wikipedia 

• Natural language 

– E.g.,  “distance between x and y” vs “how far is x from y” 

– More natural language techniques 
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Thank You! 

hangli.hl@huawei.com  

junxu@microsoft.com  
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